التعريف بعلم الرياضيات

Mathematical Books, Articles & Files
لمناقشة المراجع الرياضية والأوراق العلمية وطلب النصيحة حولها و لوضع روابط وعناواين للكتب أو المراجع العلمية أو الأوراق العلمية أو الملفات الرياضية أو التي لها علاقة وثيقة بالرياضيات

المشرف: المراقبون

قوانين المنتدى
  • هذا المنتدى مخصص لـ :
    • طرح روابط للكتب والمراجع الرياضية
    • مناقشة أسماء الكتب المقترحة للقراءة والتعلم
    • مناقشة وعرض محتويات بعض الكتب
  • ملاحظات هامة
    • قبل أن يتم طلب أي كتاب، الرجاء استخدام خاصية "البحث في المنتدى" للبحث عن الكتاب فقد يكون موجوداً سابقاً.
    • تكثر في هذه الساحة ملفات بامتداد djvu، لقراءة هذه الملفات يمكن استخدام برنامج WinDjView (اضغط هنا للتحميل)
    • إذا كان هناك رابط لا يعمل لكتاب ما ، الرجاء الإبلاغ عنه ليتم استبداله
    • يمكن البحث عن الكتب في الموقع التالي: اضغط هنا.

التعريف بعلم الرياضيات

مشاركةبواسطة aymen10 » الاثنين مارس 10, 2008 5:27 pm

سأضع إن شاء الله مجموعة من المواضيع لتعريف بتاريخ الرياضيات وبعض المبرهنات
ولاتنسونا بدعائكم
صورة العضو الشخصية
aymen10
عـضـو
 
مشاركات: 28
اشترك في: الجمعة فبراير 15, 2008 1:29 am
مكان: www.chela.2araby.com
تلقى الشكر: 0 مرة

Re: التعريف بعلم الرياضيات

مشاركةبواسطة aymen10 » الاثنين مارس 10, 2008 5:28 pm

.: .نبذة تاريخية عن الرياضيات :.


يعتبر الإغريق هم أول من درس الأعداد الأولية و خصائصها ، حيث كان رياضيو مدرسة فيثاغورس
( 500 ق.م إلى 300 ق.م ) مهتمين بالأعداد و خصائصها السحرية و المنطق العددي ، فقد فهموا فكرة الأولية ، و كانت الأعداد التامة Pefect كما هو مبين أدناه باللون الأحمر :

(ما هو العدد التام ؟

تعريف : يسمى العدد الصحيح الموجب n عددا تاما إذا كان هذا العدد مساويا لمجموع كامل عوامله الموجبة بدون العدد نفسه .

مثال : 6 هو أول عدد تام حيث أن : 6 = 1 + 2 + 3)

و الأعداد المتحابة (Amicable) موضع اهتمامهم كما هو مبين أدناه باللون الأحمر :

(الأعداد المتحابة (Amicable) :

تطلق هذه الصفة على كل زوج من الأعداد الصحيحة يكون مجموع العوامل الفعلية المختلفة لأحدهما مساو للعدد الآخر ، مثلا ، العددان 220 و284 لأن

عوامل 284 هي 1 ، 2 ، 4 ، 71 ، 142 ، و هذه تجمع إلى 220 ، كما أن عوامل العدد 220 هي

1 ، 2 ، 4 ، 5 ، 10 ، 11 ، 20 ، 22 ، 44 ، 55 ، 110 و هذه مجموعها 284 )

لقد أثبت العلماء الإغريق القدامى في حوالي 300 ق.م أن هناك عدد لا نهائي من الأعداد الأولية ، فقد أثبت إقليدس ذلك كما في الكتاب الرابع من العناصر و يعد اثباته هذا من الإثباتات الأولى التي استخدمت البرهنة بالتناقض لإثبات نتيجة ما ، كما أثبت العلماء الإغريق أيضا أن الأعداد الأولية تتوزع بطريقة غير منتظمة ( فمن الممكن أن تجد فراغات مطلقة كبيرة بين أي عددين أوليين متتاليين و من الممكن لا )


و قدم إقليدس أيضا برهان على النظرية الأساسية في الحساب التي تقول : أي عدد صحيح يمكن كتابته كحاصل ضرب أعداد أولية ، أثبت إقليدس أيضا أنه إذا كان العدد أولي فإن العدد يكون تاما ، و قد استطاع الرياضي أويلر(Euler- 1747 ) أن يثبت أن جميع الأعداد التامة الزوجية هي من هذه الصورة أي ، و لا يعرف لحد الآن هل يوجد عدد تام فردي ، و في حوالي (200ق.م) اكتشف الإغريقي إيراتوستين خوارزمية لحساب الأعداد الأولية تسمى غربال إيراتوستين .

بعد ذلك كان هناك فراغ كبير في تاريخ الأعداد الأولية فيما يسمى بالعصور المظلمة ، و لكن التطور الهام التالي تم بواسطة فيرمات مع بداية القرن السابع عشر حيث أثبت ظنية ألبرت جيرالد التي تقول : أن كل عدد أولي من الصورة يمكن كتابته بطريقة واحدة كحاصل جمع مربعين ، و كان بالإمكان اثبات إمكانية كتابة أي عدد كحاصل جمع أربع مربعات ، كما اكتشف طريقة جديدة لتحليل الأعداد الكبيرة و التي أثبتها بتحليل العدد 2027651281=44041×46161 .

كذلك أثبت ما يعرف بمبرهنة فيرمات الصغيرة التي تقول أنه إذا كان p عدد أولي فإنه لأي عدد صحيح a يكون :

p modulo ap= a أو ap-1º 1 (mod p) شرح modulo كما هو مبين باللون الأحمر :

modulo) :

وظيفة رياضية تعطي باقي القسمة ، فمثلا : 8 mod 6 = 2 و تستخدم في الرياضيات الحديثة في دراسة قابلية القسمة فنكتب مثلا : 24 = 3 (mod 7) ، و ذلك يعني أن في حالة اعتبار المعيار هو 7 فإن 24 فيها ثلاث سبعات و الباقي 3 ، و هناك تفصيلات موسعة لهذه الوظيفة في الرياضيات المجردة .)

و قد أثبتت هذه النظرية نصف ما يعرف بالفرضية الصينية التي وضعت قبل 2000 سنة و التي تقول أن أي عدد صحيح n يكون أوليا إذا و فقط إذا كان العدد يقبل القسمة على n . النصف الآخر من هذه الفرضية خاطئ حتى الآن فعلى سبيل المثال العدد : يقبل القسمة على 341 رغم أن العدد 341 مركب ( 341=31×11) .

و تعتبر مبرهنة فيرمات الصغيرة هذه هي الأساس لكثير من النتائج في نظرية الأعداد ، و كذلك هي الأساس لعدة طرق لمعرفة الأعداد الأولية و التي ما زالت تستخدم حتى الآن في الحواسيب الإلكترونية .

و قد وافق فيرمات في ما توصل إليه مع رياضيي عصره ، و بالخصوص مع مونك مارين ميرسين (Mersenne) ففي أحد رسائله إلى ميرسين تحدث فيرمات عن حدسه في أن العدد يكون أوليا دائما عندما يكون n من قوى العدد 2 ، مثل ( 1 ، 2 ، 4، 8 ، 16 ، ..... ) و قد تحقق من ذلك بالنسبة للأعداد (n = 1 , 2 , 4 , 8 , 16 ) ، و أوضح بأنه إذا كانت n ليس من قوى 2 فالنتيجة خاطئة .

و الأعداد من هذه الصورة سميت بأعداد فيرمات ، و قد كان فيرمات مخطئا في حدسه هذا و لم يتم إثبات ذلك إلا بعد أكثر من 100 سنة و ذلك عندما أثبت أويلر أن العدد :

= 4294967297 يقبل القسمة على 641 و بالتالي فهو ليس أوليا .

أما بالنسبة للأعداد من الصورة فقد استدعت انتباه الرياضيين لسهولة إثبات أنه إذا لم يكنnعددا أوليا ، فيجب أن يكون العدد مركبا ، و قد سميت هذه الأعداد بأعداد ميرسين لأنه اهتم بها كثيرا و قام بدراستها ، و في الحقيقة أن الأعداد من الصورة عندما يكون n أوليا ليست دائما تكون أعدادا أولية ، فعلى سبيل المثال العدد

( = 2047 = 23 × 89 عددا مركبا ) .

و سأخصص الفصل القادم لأعداد ميرسين الأولية ، حيث أنها ظلت هذه الصورة لعدة قرون تقدم - و إلى الآن - أكبر الأعداد الأولية المعروفة ، فقد تم إثبات أن العدد M19 أولي بواسطة كاتالدي (Cataldi) في 1588 ، و ظل هذا العدد هو أكبر عدد أولي لمدة 200 سنة حتى أثبت أويلر أن العدد M31 هو أولي ، و قد ظل هذا العدد الأولي الأخير هو الأكبر لقرن آخر حتى أثبت ليوكاس (Lucas) أن العدد M127 ( المكون من 39 رقما ) أوليا و هذا العدد ظل هو الأكبر حتى ظهور الحواسيب الإلكترونية ، حيث أثبت روبنسون (Robinson) في 1952 و باستخدام الحواسيب الأولى أن الأعداد M521 ، M607 ، M1279، M2203 ، M2281 أولية ، و كان حتى 1998 قد تم اكتشاف 37 عددا أوليا من أعداد ميرسين ، و كان أكبرها هو العدد M3021377 و الذي يتكون من 909521 رقما ، و سيأتي ذكره لاحقا .

كان لأعمال أويلر وقع و أثر كبير في نظرية الأعداد بشكل عام و في الأعداد الأولية بشكل خاص ، حيث تمم مبرهنة فيرمات الصغيرة و وسعها ليقدم دالة فاي لأويلر ، و كما أشرنا في الأعلى استطاع تحليل عدد فيرمات الخامس كما وجد في تحليله ذلك 60 زوجا من الأعداد المتحابة ، و وضع ما جاء بعد ذلك ( و لم يستطع اثباته ) و هو ما عرف بقانون التعاكس التربيعي .

و كان أويلر أول من أدرك إمكانية دراسة نظرية الأعداد باستخدام أدوات التحليل و الذي أدى إلى اكتشاف مادة التحليل العددي ، و قد استطاع أويلر إثبات أنه ليست المتسلسلة التوافقية ( Harmonic Series) فقط متباعدة ( divergent ) بل أن المتسلسلة :

1/2+1/3+1/5+1/7+1/11+... المكونة من مجموع مقلوب الأعداد الأولية أيضا متباعدة ( divergent ) ، و مجموع الحدود n في المتسلسلة التوافقية يبلغ تقريبا log(n) ، بينما المتسلسلة السابقة تتباعد بشكل بطيء إلى log(log(n)) ، و هذا يعني أن مجموع مقلوبات ( reciprocals ) كل الأعداد الأولية التي تم اكتشافها حتى بالحواسيب الفائقة يساوي تقريبا 4 فقط ، لكن مع ذلك المتسلسلة تبقى تتباعد إلى ∞ .

أما بالنسبة لانتشار الأعداد الأولية و كثافتها فمن النظرة الأولى يبدو أن الأعداد الأولية تنتشر بطريقة عشوائية بعض الشيء بين الأعداد الصحيحة ، فعلى سبيل المثال في 100 عدد السابقة لـ 10000000 يوجد 9 أعداد أولية ، بينما في 100 عدد التالية يوجد عددان أوليان فقط .

مهما يكن في الأعداد الأولية الكبيرة فإن الطريقة التي تنتشر فيها الأعداد الأولية هي منتظمة جدا ، فقد قام ليجاندر ( Legendre) و جاوس (Gauss ) بإجراء حسابات موسعة في كثافة الأعداد الأولية .

لقد أخبر جاوس صديقه أنه لو حصل على 15 دقيقة و هو غير مشغول فسوف يقضيها في حساب الأعداد الأولية الأطفالية ( أول 1000 عدد أولي ) ، و يذكر جاوس أنه حتى نهاية حياته قد حسب ثلاثة ملايين عدد أولي .

كلا من ليجاندر و جاوس وصلا إلى استنتاج و هو أنه لأي عدد n كبير ، فإن كثافة الأعداد الأولية القريبة من هذه العدد تساوي تقريبا 1/log(n) ، و أعطى ليجاندر تقديرا لـ p(n) ( عدد الأعداد الأولية الأقل من n ) حيث وجد : p(n)=n/(log(n)-1.08366 ، في حين أن جاوس قدم تقديرا على صورة تكامل لوغاريتمي هو :

p(n)=∫(1/log(t))dt حيث أن مدى التكامل من 2 إلى n .

و تسمى العبارة بأن كثافة الأعداد الأولية هي 1/log(n) بمبرهنة الأعداد الأولية ، و قد كانت هناك عدة محاولات لإثباتها تواصلت خلال القرن التاسع عشر بتقدم ملحوظ بواسطة تشبيتشيف (Chebyshev ) ، و ريمان (Riemann) و هذا الأخير ربط النظرية بما سماه فرضية ريمان ، و سأحاول أن أغض الطرف عن هذه الفرضيات و البراهين عليها لأنها بحوث متقدمة و متخصصة إلى حد ما ، و ما زال هناك العديد من الأسئلة المفتوحة تتعلق بالأعداد الأولية ، و بعضها ما زال من مئات السنين كمسألة العدد التام الفردي .

أما بالنسبة لكيفية معرفة و إكتشاف الأعداد الأولية فتوجد طرق كثيرة أقدمها و أسهلها هو ما يعرف بغربال إراتوستين ( Sieve of Eratosthenes ) و طريقة القسمة العادية (trial division ) ، حيث ما زالتا هاتان الطريقتان هما الأسهل لإيجاد الأعداد الأولية الصغيرة جدا ( الأقل من 1000000 ) .

أما بالنسبة لإيجاد الأعداد الأولية الكبيرة فهناك طرق خاصة تستخدم ، و هذه الطرق هي حالات خاصة من نظرية لاجرانج من نظرية المجموعات .

و نشير هنا إلى مفهوم وضع في 1984 بواسطة صمويل ييت و هو : Titanic Primes ، أي الأعداد الأولية الهائلة ، و عرفها بأنها الأعداد المكونة من 1000 رقم على الأقل ، و كان عدد هذه الأرقام يومها 110 أرقام ، أما الآن ( أي بعد 17 سنة فقط ) فإن عددها يفوق ذلك العدد بأكثر من 1000 مرة ! و مع استمرار تقدم الحواسيب الإلكترونية التي تعطي فرص أكبر للبحث عن أعداد أولية أكبر فإن هذا العدد يتزايد باستمرار ، و نتوقع بعد مدة قصيرة رؤية أول عدد أولي ذو 10 ملايين رقم
صورة العضو الشخصية
aymen10
عـضـو
 
مشاركات: 28
اشترك في: الجمعة فبراير 15, 2008 1:29 am
مكان: www.chela.2araby.com
تلقى الشكر: 0 مرة

Re: التعريف بعلم الرياضيات

مشاركةبواسطة aymen10 » الاثنين مارس 10, 2008 5:29 pm

الرياضيات وعلومها ومؤلفاتها

تواريخ مهمة في الرياضيات
الرياضيات من العلوم التي برع فيها العرب والمسلمون، وأضافوا إليها إضافات كانت من جملة أسباب تطور هذا العلم في العصر الحديث. فقد تقدم هذا العلم بفضل العرب خلال القرنين التاسع والعاشر للميلاد. فبعد أن اطلعوا على حساب الهنود أخذوا عنه نظام الترقيم بدلاً عن نظام الترقيم على حساب الجُمَّل. . وكان الحساب العربي ينطلق من ثلاثة أصول: حساب اليد، ويدعى أيضًا حساب العقود. لأن الحاسب كان يعقد أصابعه حين العد، وقد يكون خليطًا من المعارف الحسابية التي أخذوها عن الفرس والروم. وحساب موروث الترجمة، وهو الذي نقل عن الإغريق إبان حركة الترجمة ويتمثل في معارف متفرقة عن الجبر وخصائص الأعداد. والحساب الهندي، الذي انتقل عبر عدة قنوات. أخذ العرب أرقام هذا الحساب دون أشكالها. وتبنّى العرب سلسلتيْن من بين عدد كبير من الأشكال عرفت إحداهما بالأرقام الهندية وهي 1، 2، 3، 4، 5، 6، 7، 8، 9. وعُرِفت الأخرى بالأرقام العربية 9 ،8 ،7 ،6 ،5 ،4 ،3 ،2 ،1. انتشرت الأخيرة في بلاد المغرب العربي والأندلس ومنها انتشرت إلى أوروبا من خلال المعاملات التجارية والرحلات والسفارات التي كانت بين الخلفاء وملوك بعض دول أوروبا.
لم تعرف الأرقام العربية بهذا الاسم في بادئ الأمر، بل كانت تسمى الأرقام الغبارية. والأصل في تسميتها بهذا الاسم أن الهنود كانوا يأخذون غبارًا لطيفًا ويبسطونه على لوح مستوٍ من الخشب أو خلافه ويرسمون عليه الأرقام التي يحتاجون إليها في معاملاتهم الحسابية والتجارية. والسلسلة الغبارية (العربية) مرتبة على أساس الزوايا؛ كما في بعض الساعات الرقمية أو الحواسيب في هذه الأيام. فالرقم واحد به زاوية واحدة واثنان زاويتان وهكذا
كما اشتغل العرب بالجبر وبرعوا في ذلك وربطوه بالأشكال الهندسية، وهم أول من أطلق لفظة جبر على هذا العلم، وهم أول من ألف فيه بطريقة علمية منظمة، كما توسعوا في حساب المثلثات وبحوث النسبة وقسموها إلى ثلاثة أقسام: عددية وهندسية وتأليفية. كما حلوا بعض معادلات الدرجة الأولى بطريقة حساب الخطأين وكذلك معادلات الدرجة الثالثة، وأحلوا الجيوب محل الأوتار، وأتوا بنظريات أساسية جديدة لحل مثلثات الأضلاع. وإلى العرب يرجع الفضل في وضع علم المثلثات بشكل علمي منظم مستقل عن الفلك مما حدا بالكثيرين إلى اعتباره علمًا عربياً كما اعتبروا الهندسة علمًا يونانياً.

الحساب. استخدم العرب منذ الجاهلية إلى صدر العصر العباسي طريقتين للعد الحسابي؛ فكانوا إذا أرادوا أن يسجلوا عددًا في البيع والشراء أو الإرث أو الكيل وخلافها، دوّنوه كتابة بالحروف هكذا تسعمائة وخمسون دينارًا أو بحساب الجمّل هكذا (ظن) حيث قيمة الظاء في هذا الحساب 900 والنون 50. وكان العرب قد اقتبسوا فكرة حساب الجمّل من جيرانهم أو من البلاد التي فتحوها، وهذا الحساب اختراع ساميّ الأصل. .
كان الهنود يستعملون سونيا وتعني الفراغ أو الخواء لتدل على كلمة صفر، وكان العرب يستخدمون هذا اللفظ (صفر) للدلالة على معنى الخلوّ منذ أمد بعيد. ومن ذلك قولهم صفر اليدين؛ أي خالي اليدين ومنها صَفَر الشهر المعروف. وقد كان الصِّفر العربي يرسم في الأصل حلقة صغيرة وسطها فراغ وبقيت على ذلك في المغرب الإسلامي والأندلس، بينما انطمست في المشرق فصارت نقطة للتفريق بين الصفر والرقم 5 (خمسة). وقد ظهرت الأرقام والصفر المرسوم على هيئة نقطة في مؤلفات عربية تعود إلى سنة 274هـ، 787م وذلك قبل أن تظهر في الكتب الهندية.
تقوم الأرقام العربية على النظام العشري والنظام الكسري الذي أوجده العرب واستخدموه في حساباتهم ومعاملاتهم منذ وقت مبكر. فقد استعمله إبراهيم الأقليدسي في أوائل القرن الرابع الهجري. وباستخدام الأرقام والصفر سهل حل المسائل الحسابية وتدوين الكسور العشرية والعادية وبناء المعادلات الرياضية من مختلف الدرجات وحلها.
قسّم العرب الحساب العملي إلى غباري، وقصدوا به ذلك الحساب الذي يحتاج إلى أدوات لاستخراج نتائجه؛ كالقلم والورق أو التخت (اللوح ـ السبورة). وهوائي وهو الذي تجرى عملياته في الذهن ولا يحتاج إلى أدوات. وأكثر الناس استخدامًا له التُّجار والمتعاملون معهم في الحساب الفوري. وبالإضافة للحساب الغباري والهوائي، قسّموا الحساب إلى بابيْن الأول يشمل الأرقام الصحيحة، والثاني يشمل الكسور. وذكروا تحت كل منهما فروعًا تختص بالعمليات التي يتناولها كل منهما؛ من ذلك الجمع والتضعيف والضرب، والتنصيف والتفريق (الطرح) والقسمة والتجذير أو استخراج الجذور.

قسّم العرب الأعداد أيضًا إلى عاد (واحد) ومعدود (بقية الأعداد). وكان هذا من وحي فلسفة إخوان الصفا التي تقول: ¸الواحد أصل الأعداد ومنشؤها؛ تأتي جميعها منه وهو مخالف لها. وتنشأ الأعداد من الواحد صعودًا: 1، 2، 3، 4… إلخ؛ وهبوطًا 1، 1/2، 1/4، 1/8، 1/16 … إلخ. كما قسّم الرياضيون العرب الأعداد إلى أزواج (زوجية) وأفراد (فردية) وبيّنوا أنواعها بالتفصيل، وقسّموا العدد إلى أربعة أنواع: تام، وزائد، وناقص، ومتحاب؛ فالتام هو الذي إذا جمعت عوامله فحاصل الجمع يساوي العدد نفسه؛ فمثلاً عوامل 28 هي: 1، 2، 4، 7، 14 فإذا جُمعت صارت 28. والزائد هو الذي إذا جمعت عوامله كان حاصل الجمع أكبر من العدد نفسه؛ فمثلاً عوامل العدد 12 هي: 1، 2، 3، 4، 6، فإذا جُمعت صارت 16؛ أي أكبر من العدد 12. والناقص هو الذي إذا جُمعت عوامله كان حاصل الجمع أقل من العدد فمثلاً عوامل العدد 10 هي: 1، 2، 5 فإذا جُمعت صارت 8؛ أي أقل من العدد 10. أما الأعداد المتحابة فهي أزواج من الأعداد يكون مجموع عوامل أحدها يساوي الثاني، ومجموع عوامل الثاني يساوي الأول؛ فمثلاً العددان 220 و284 متحابان لأن عوامل 220 هي: 1، 2، 4، 5، 10، 11، 20، 22، 44، 55، 110 وحاصل جمعها 284، وعوامل 284 هي: 1، 2، 4، 71، 142 وحاصل جمعهما 220.

كان العرب أول من اكتشف علامة الكسر العشري، وكان أول ذكر لها في كتاب غياث الدين جمشيد الكاشي (ت نحو 828هـ، 1424م) بعنوان كتاب مفتاح الحساب، وكان ذلك قبل 175 سنة من ستيفن الذي ينسب له هذا الاكتشاف. وقد ذكر الكاشي النسبة بين محيط الدائرة وقطرها (ط) بالكسر العشري وذلك في كتابه الرسالة المحيطة، وقد أعطى قيمة 2ط لستة عشر رقمًا عشرياً كما يلي:

2ط = 6,283185071795865.

أي أن ط = 3,1415925358979325

ولم يسبقه أحد في الوصول إلى هذه النسبة الدقيقة.

توصل الرياضيون العرب والمسلمون إلى طرق ميسّرة لإجراء شتى العمليات الحسابية؛ ففي الجمع مثلاً كانت لديهم طرق مختلفة لجمع الأعداد، بعضها يمكن استخدامه الآن في المدارس الابتدائية، وتتلخص في زيادة خانة قبل المجموع تسمى خانة المحفوظات،
وفي القسمة والضرب استخدموا طرقًا عديدة يكاد بعضها يطابق ما نستخدمه اليوم. ويقول ليوناردو فيبوناتشي، أحد علماء الرياضيات الإيطاليين في القرن السابع الهجري، الثالث عشر الميلادي، أنه تعلّم طريقة القسمة لأول مرة من أساتذته علماء العرب والمسلمين في صقلية. وأن تطويرهم لطريقة القسمة تنم عن خبرة رياضية عظيمة لا يستهان بها. أما في الضرب فقد ابتكروا طرقًا عديدة بعضها فيه الطرافة أو ما يمكن أن نطلق عليه رياضيات التسلية عند العرب. من أطرف هذه الطرق وأمتعها طريقة الشبكة وقد وردت في كتاب خلاصة الحساب لبهاء الدين العاملي (ت 1031هـ، 1622م). فمثلاً لضرب 235 × 47 نتبع ما يلي:

نرسم مستطيلاً مقسمًا إلى 3 خانات أفقية وخانتيْن رأسيتيْن، نضع الرقم 235 أعلى المستطيل على الخانات الأفقية كما في الشكل، ونضع العدد 47 على يسار الخانتين الرأسيتيْن. ثم نضرب العدد 7 × 2 ونضع الحاصل 14 في الخانة الأولى تحت العدد 2، ونضرب 7 × 3 ونضع الحاصل 21 في الخانة الثانية، ثم نضرب 7 × 5 ونضع الحاصل 35 في الخانة الثالثة. كذلك نضرب الـ 4 في كل من 2، 3 و5 ونضع حاصل ضرب كل منها في خانات الصف الثاني، وبجمع الأعداد نحصل على حاصل الضرب وهو 11,045.
وتوجد طرق كثيرة غير هذه، فيها المتعة والصعوبة التي يعشقها المهتمون بالرياضيات كان يطلق عليها العرب اسم الملح الاختصارية.
بعد أن توسع العرب في بحوث النسبة استفادوا من الفرع الثالث فيها، وهو النسبة التأليفية، واستخرجوا منها الأنغام والألحان. من أمثال ذلك ما أورده إخوان الصفا ¸نغمة الزير رقيق خفيف، ونغمة اليمّ غليظ ثقيل؛ والرقيق ضد الغليظ، والخفيف ضد الثقيل وهما متباينان متنافران لا يجتمعان ولا يأتلفان إلا بمركب ومؤلف يؤلفهما، ومتى لا يكون التأليف على النسبة لا يمتزجان ولا يتحدان، ولا يستلذهما السمع، فمتى ألِّفا على النسبة ائتلفا وصارا كنغمة واحدة لا يميز السمع بينهما، وتستلذهما الطبيعة، وتسر بهما النفس·. وعدّ العرب الموسيقى من بين العلوم الرياضية، وكانت الرياضيات عندهم فرعًا من فروع الفلسفة، ويبدو ذلك جلياً عند ابن خلدون إذ يقول في المقدمة ¸وعلم الموسيقى هو معرفة نسب الأصوات والنغم بعضها من بعض، وتقديرها بالعدد، وثمرته معرفة تلاحين الغناء·.
كان إخوان الصفا من أفضل من تناول موضوعات التناسب وكيفية استخراج المجهول بوساطتها، بل ربطوا بينها وبين الميكانيكا وسائر فروع علم الفيزياء والمثلثات والفلك فإن من فوائد النسبة لديهم ¸… ما يظهر في الأبعاد والأثقال من المنافع… ومن أمثال ذلك ما يظهر في ظل الأشخاص من التناسب بينها، وذلك أن كل شخص مستوي القَدّ، منتصب القوام، فإن له ظلا، وأن نسبة طول ظل ذلك الشخص إلى طول قامته في جميع الأوقات كنسبة جيب الارتفاع في ذلك إلى جيب تمام الارتفاع سواء. وهذا لا يعرفه إلا المهندسون أو من يحل الزيج؛ وهكذا توجد هذه النسبة في جر الثقيل بالخفيف، وفي تحريك المحرك زمانًا طويلاً بلا ثقل ثقيل. وذلك ما يظهر أيضًا في الأجسام الطافية فوق الماء ما بين أثقالها ومقعر أجرامها في الماء من التناسب؛ وذلك أن كل جسم يطفو فوق الماء، فإن مكانه المقعر يسع من الماء بمقدار وزنه سواء. فإن كان ذلك الجسم لا يسع مقعره بوزنه من الماء، فإن ذلك الجسم يرسب في الماء ولا يطفو وإن كان ذلك المقعر يسع بوزنه من الماء سواء؛ فإن ذلك الجسم لا يرسب في الماء، ولا يبقى منه شيء ناتئ عن الماء، بل يبقى سطحه مستويًا مع سطح الماء سواء. وكل جسمين طافيين فوق الماء، فإن نسبة سعة مقعر أحدهما إلى الآخر كنسبة ثقل أحدهما إلى الآخر سواء. وهذه الأشياء التي ذكرناها يعرفها كل من كان يتعاطى صناعة الحركات أو كان عالماً بمراكز الأثقال والأفلاك والأجرام والأبعاد·.

كانت كتب الحساب التطبيقية زاخرة بالأمثلة والتمارين الرياضية، وكانت تتناول مسائل واقعية معمولاً بها آنذاك؛ فمنها ما يتناول المعاملات التجارية ومنها ما يتناول الزكاة والصدقة وتقسيم الغنائم ورواتب الجند. كما تطرقوا إلى البريد واللحاق به وإلى طرق البيع والشراء وهذه ميزة في مؤلفاتهم كلها دون استثناء. وعرفوا المتواليات الحسابية والهندسية بأنواعها، فذكروا قوانين خاصة لجمعها. كما بنوا قواعد لاستخراج الجذور ولجمع المربعات المتوالية والمكعبات، وبرهنوا على صحتها، وتوصلوا إلى نتائج طريفة في ذلك.

استخرج رياضيو العرب والمسلمين المجاهيل العددية عن طريق التحليل بطريقتين أخرييْن قلما يعرفهما شخص في العصر الحديث سوى المتخصصين في الرياضيات. وهاتان الطريقتان هما حساب الخطأين، والتحليل والتعاكس. وكانت لهم مؤلفات في ذلك منها كتاب الخطأين لأبي كامل الحاسب المصري وكتاب حساب الخطأين ليعقوب بن محمد الرازي وغيرهما. وكانت هاتان الطريقتان شائعتين عند العرب، وأكثر استخدامًا من غيرهما. وإليك هذين المثالين: الأول يوضح طريقة الحساب والخطأ، والثاني يوضح طريقة الوصول إلى المجهول بطريقة التحليل والتعاكس.

أوجد العدد الذي إذا أضيف إليه ثلثاه وثلاثة كان الناتج 18.

الخطوة الأولى: افرض المجهول ما شئت وسمه المفروض الأول، ثم تصرف فيه بحسب السؤال، فإن كان مطابقًا فهو المطلوب، وإن لم يكن كذلك فإن الخطأ بالزيادة أو النقصان فهو الخطأ الأول.

الخطوة الثانية: افرض مجهولاً آخر وسمه المفروض الثاني، فإن أخطأ حصل الخطأ الثاني.

الخطوة الثالثة: اضرب المفروض الأول في الخطأ الثاني، وسمه المحفوظ الأول.

الخطوة الرابعة: اضرب المفروض الثاني في الخطأ الأول، وسمه المحفوظ الثاني.

الخطوة الخامسة: إذا كان الخطآن من زائدين أو ناقصين فاقسم الفرق بين المحفوظين على الفرق بين الخطأين، وإن اختلفا فمجموع المحفوظين على مجموع الخطأين لتحصل على المجهول.

لحل المسألة خذ المفروض الأول: 3 0 إذا تصرفنا فيه بحسب السؤال يكون:

3 + 3 × 2/3 + 3 = 3 + 2 + 3 = 8

… يكون الخطأ الأول 18 - 8 = 10 ناقص

خذ المفروض الثاني: 6 0 إذا تصرفنا فيه بحسب السؤال يكون:

6 + 6× 2/3 + 3 = 13

… يكون الخطأ الثاني 18 - 13 = 5 ناقص

إذن يكون المحفوظ الأول = 3 × 5 = 15

ويكون المحفوظ الثاني = 6 ×10 = 60

الفرق بين 60 و 15 = 45 والفرق بين الخطأين هو 10 - 5 = 5

… الجواب 45/5 = 9

اما استخراج المجاهيل بطريقة التحليل والتعاكس فتستـند على العمل بعكس ما أعطاه السـائل فإن ضعّف فنصِّـف، وإن زاد فانقــص، وإن ضرب فاقسـم أو جذّر فربّع أو عكس فاعكس مبتدئًا من آخر السؤال. وقد وردت هذه المسألة في كتاب بهاء الدين العاملي: ¸عدد ضرب في نفسه وزيد على الحاصل اثنان وضعــف وزيد على الحاصل ثلاثة دراهم وقسم المجتمع (المجموع) على خمسة وضرب الخارج في عشرة حصل خمسون·.

نبدأ بآخر السؤال فنقسم 50 - 10 ثم نضرب 5 في مثلها؛ أي 5 × 5 = 25 وننقص من 25 العدد 3 فيكون الباقي 22 ومن نصف هذا العدد ننقص 2؛ أي 11 - 2 = 9 فالجواب يكون الجذر التربيعي لـ 9 أي 3.

اشتغل العرب بما يمكن أن نطلق عليه رياضيات التسلية؛ فقد برعوا في تقديم المسائل الرياضية في صورة ألغاز، كما اشتغلوا بالمربعات السحرية. وأول من بحث في هذا النوع ثابت بن قرة. وظهر كثيرًا في مصنفات الرياضيين الآخرين، وكانوا يطلقون على المربعات السحرية الأشكال الترابية.

من هذه المربعات ما أثبته إخوان الصفا في رسائلهم؛ وهي المربعات التي كيفما عدت كانت الجملة 15. وهي تتكون من مربع كبير يضم في داخله تسعة مربعات لتشمل الأرقام من 1 إلى 9
ومن ذلك أيضًا المربع الذي يضم في داخله 16 مربعًا صغيرًا تشتمل الأرقام من 1 إلى 16 ومن خاصيته أنه كيفما عدّ كانت الجملة 34
كما يوجد شكل به 36 مربعًا كيفما عدّ كانت الجملة 101، وآخر ذو 64 مربعًا كيفما عدّ كانت الجملة 260 وآخر ذو 81 مربعًا كيفما عدّ كانت الجملة 369
الجبر. عرف ابن خلدون علم الجبر بأنه من فروع الرياضيات، وأنه صناعة يستخرج بها العدد المجهول من العدد المعلوم إذا كان بينهما صلة تقتضي ذلك. وكان هذا العلم معروفًا لدى الأمم الأخرى؛ فالإغريق مثلاً كانوا قد توصلوا إلى حل معادلات من الدرجة الثانية، غير أنهم كانوا يجهلون الرموز الجبرية، وكانت طرقهم في ذلك معقدة وغير موحدة. ولم يصبح الجبر علمًا خالصًا إلا بعد أن اشتغل به العرب والمسلمون. كما أن الفضل يعود إلى الرياضيين العرب والمسلمين مثل ابن يونس والحراني وغيرهما في التمهيد لابتكار اللوغاريثمات.
عرف العرب قبل الإسلام نوعًا من الجبر الذي كان يرد في طرائفهم وأشعارهم من قبيل الألغاز، إلا أنهم لم يدونوا ذلك لاعتمادهم على الرواية الشفهية في ضبط كل أمورهم. وقد كثر ذكر المعادلات ذات المجهول الواحد في أشعارهم كقول زرقاء اليمامة:
ليت الحمام ليه إلى حمامتيــــه
أو نصفه فقديه صار الحمام ميه
وصاغ النابغة هذا اللغز في أبيات أخرى فجاءت كما يلي:
واحكم كحكم فتاة الحي إذ نظرت إلى حمامٍ سراعٍ وارد الثّمدِ
قالت ألا لَيْتما هذا الحمام لنا إلى حمامتنا مع نصفه فقدِ
فحَسَّبوه فألفَوْه كما ذكرت تسعًا وتسعين لم تنقص ولم تزد
فكملت مائة فيها حمامتها وأسرعت حسبة في ذلك العدد!
وأعظم رياضيي القرن الثالث الهجري، التاسع الميلادي هو محمد بن موسى الخوارزمي، وهو أول من سمّى علم الجبر جبرًا وأول من ألّف في هذا العلم بتشجيع من الخليفة المأمون؛ فصنّف فيه كتابه المشهور الجبر والمقابلة. ويشهد على عظمة الخوارزمي أن علم الجبر لم يتقدم خلال القرون الثلاثة التي تلت وفاته تقدمًا يذكر.
لم يستخدم الرياضيون الرموز في بادئ الأمر، وإنما جاءت هذه الرموز في حقبة متأخرة نسبياً وعلى يد الرياضيين العرب أنفسهم. فقد بدأت رموز هذا العلم في شكل مصطلحات لغوية ثم تطورت؛ ومن ذلك استخدام الخوارزمي ومن جاء بعده بقليل المصطلحات الآتية:

الجبر: نقل الحدود المنفية إلى الجانب الآخر من المعادلة.

المقابلة: توحيد الحدود المتماثلة.

الحد: الكمية المعبر عنها في المعادلة بعدد معلوم أو مجهول.

العدد الأصم: الذي لا ينجذر إلا بكسر.

الجذر: كل شيء مضروب في نفسه بدءًا من الواحد إلى أعلى وما دونه من كسور. وهو الحد المجهول في المعادلة ونعبر عنه حالياً بالرمز س، وأطلقوا عليه أيضًا مصطلح الشيء.

جزء الجذر (الشيء): معكوس الجذر؛ أي 1/س .

المال: كل ما اجتمع من الجذر المضروب في نفسه (س²).

جزء المال: معكوس المال أي 1/س.

العدد المفرد: كل ملفوظ به من العدد بلا نسبة إلى جذور ولا إلى مال.

قسم الخوارزمي المعادلات إلى ستة أقسام كالتالي:

الأموال التي تعدل (تعادل) جذورًا ويقابلها بالرموز الحالية: م س² = ب س.

الأموال التي تعدل عددًا معلومًا ويقابلها بالرموز الحالية: م س² = ح.

الجذور التي تعدل عددًا معلومًا ويقابلها بالرموز الحالية: ب س = ح.

الأموال والجذور التي تعدل عددًا معلومًا ويقابلها بالرموز الحالية: م س² + ب س = ح .

الجذور والأعداد المعلومة التي تعدل أموالاً ويقابلها بالرموز الحالية: ب س + ح = مس² .

الأموال والأعداد التي تعدل جذورًا ويقابلها بالرموز الحالية: م س² + ح = ب س.

ثم تطورت هذه المصطلحات لتحل محلها رموز سهلت استخدام هذا العلم وقادته للتطور، ومن هذه الرموز ما استخدمه القلصادي (ت 891هـ، 1486م) فقد استخدم العلامات التالية:

جـ : لتدل على الجذر؛ وهو الحرف الأول من كلمة جذر.

ش : لتدل على المجهول؛ وهو الحرف الأول من كلمة شيء (س).

م : لتدل على مربع المجهول؛ وهو الحرف الأول من كلمة مال (س²).

ك : لتدل على مكعب المجهول؛ وهو من حروف كلمة مكعب (س§).

ل : لتدل على المساواة بين الكميتيْن (ل)، وهو من حروف كلمة يعدل.

… ثلاث نقاط للدلالة على النسبة.

المعادلات. يعد حل المعادلات التكعيبية بوساطة قطوع المخروط من أعظم الأعمال التي أسهم بها الرياضيون العرب في هذا العلم. وقد طبقوا نظرياتهم فيها على حلول بعض المسائل الصعبة التي يؤدي حلها إلى معادلات تكعيبية. ومن جملة المسائل التي وردت في تمريناتهم التطبيقية يتبين أنهم كانوا يعرفون حل المعادلات من الدرجة الثانية، كما عرفوا أن لهذه المعادلات جذريْن قاموا باستخراجهما إن كانا موجبين. وتحققوا من الحالة التي يكون فيها الحل مستحيلاً في نطاق الأعداد الحقيقية.

فالخوارزمي يقول في هذا الصدد في كتاب الجبر والمقابلة ¸… واعلم أنك إذا نصفت الأجذار وضربتها في مثلها فكان يبلغ ذلك أقل من الدراهم التي مع المال فالمسألة مستحيلة… وإن كان مثل الدراهم بعينها فجذر المال مثل نصف الأجذار سواء، لا زيادة ولا نقصان…·.

حل العرب معادلات من قوى أعلى؛ فعلى سبيل المثال نجد أن محمد بن الحسن الكرخي حل معادلات على النمط التالي في كتابه الفخري:

س ¨ + 5س² = 126

و م س2ن + ب سن + حـ = صفر

و س ¨ + م س§ = د

و (100 - س²) (10 + س)² = 8100

والمعادلة الأخيرة حل للمسألة التالية:

أوجد طول الضلع الرابع المجهول في شبه المنحرف أ ب جـ د الذي فيه أ ب يوازي جـ د، أ د يساوي د جـ يساوي ب جـ يساوي10 والمساحة 90؟
ع = ¬ (100 - س²)

… مساحة أ ب جـ د =

(20 + 2س) ¬ (100 - س²)

أي أن 1/2 ¬ (100 - س²) (10 + س) = 90

وبتربيع الطرفين يكون الناتج:

(100 - س²) (10 + س)² = 8100

(10 + س) ص = 90، حيث ص = ¬( 100 - س²)؛ أي س² + ص² = 100

أما معادلات الدرجة الثانية فقد وردت فيها مسائل كثيرة في كتبهم منها على سبيل المثال المعادلات التالية:

س² + ص = ط² و ص² + س = ن²

و س ص + س = ط² و س ص + ص = ن²

ولعل الرياضيين العرب هم أول من استعان بالهندسة لحل المعادلات الجبرية من الدرجة الثانية، وهذا من طرق الهندسة التحليلية؛ ولثابت بن قرة في ذلك ابتكارات لم يسبق إليها، فقد وضع كتابًا في الجبر بيَّن فيه علاقة الجبر بالهندسة وكيفية الجمع بينهما. كما وردت مسائل لدى الخوارزمي وغيره من الرياضيين العرب استخدموا فيها الهندسة لحل مسائل الجبر من ذلك ما ورد لدى الخوارزمي في حل المعادلات التالية هندسيًا:

س² + 10س = 39

س² + 21 = 10س

س² = 3 س + ع

فلحل المعادلة الأولى على سبيل المثال: نفترض أن المستقيم جـ ب = س ، ثم نقيم عليه المربع أ ب جـ د ونمد د جـ إلى م، و د أ إلى هـ بحيث يكون أ هـ مساويًا لـ جـ م =1/2 × 10 = 5 ثم نكمل الرسم
من المساحات الموضحة، والمعادلة
س² + 10س = 39

نجد: س² + 10س + 25 = 39 + 25 = 64

وهي مساحة المربع د هـ ع م

… ضلعه يساوي 8

… س = 8 - 5 = 3
عني الرياضيون العرب أيضًا بالجذور الصّماء، وبحثوا في نظرية ذات الحدين التي يمكن بوساطتها رفع المقدار الجبري ذي الحدين إلى قوة معلومة أُسها عدد صحيح موجب. أما في الجذور الصم؛ فقد كان الخوارزمي أول من استعمل كلمة أصم للإشارة إلى العدد الذي لا جذر له. وأوجد العرب طرقًا لإيجاد قيم تقريبية للأعداد التي ليس لها جذور؛ فبهاء الدين العاملي يقول في الخلاصة: ¸وإن كان أصم فأسقط منه أقرب المجذورات إليه، وانسب الباقي إلى مضعّف جذر المُسقط مع الواحد، فجذر المُسقط مع حاصل النسبة هو جذر الأصم بالتقريب·. فلو افترضنا أن العدد الأصم في هذ الحالة (م)، وكان أقرب عدد له جذر تربيعي هو (ب²) وكان الفرق يساوي (هـ) لذا فإن:

م - ب² = هـ

وعلى هذا يكون ¬ م = ب + ه/2ب+1

فعلى سبيل المثال ¬ 10= 3 + 1/2×3+1 = 3 + 1/7 = 1/7 3.
الهندسة. أخذ هذا المصطلح من كلمة أندازة الفارسية الأصل وعربت إلى هندسة. اهتم العرب بهذا العلم، وبنوا فيه على ما نقلوه من اليونان. وكان أهم مرجع لديهم هو كتاب أقليدس الذي ترجموه بعنوان الأصول وكتاب أقليدس. وكانت للعلماء العرب إسهامات طيبة في هذا العلم، إلا أنها لا ترقى إلى المستوى الذي بلغوه في الحساب والجبر. قام بترجمة كتاب أقليدس ثلاثة من أشهر العلماء، وكانت لكل منهم ترجمته الخاصة به. وقام بهذه الترجمات كل من حنين بن إسحاق، وثابت بن قرة ويوسف بن الحجاج. ثم جاء من بعدهم من اختصره مثل ابن سينا وابن الصلت، وفي مرحلة أخرى ألّف العرب على نسقه وأضافوا عليه مثل ابن الهيثم والكندي، ومحمد البغدادي.

ولما كان العرب يميلون إلى الجانب التطبيقي في تناولهم للمعارف أكثر من الجانب النظري فقد خرجوا بالهندسة النظرية اليونانية إلى المجال العملي التطبيقي. من ثم نجد أنهم يقسمون الهندسة إلى قسمين: عقلية وحسية؛ فالعقلية هي النظرية وألحقوها بالفلسفة، ولا يعمل بها إلا الحكماء الراسخون في الرياضيات البحتة. وهذا هو النوع الذي تفنن فيه علماء اليونان وعلى رأسهم أقليدس. أما العرب فكان إنجازهم فيها ضئيلاً نسبيًا. أما الهندسة الحسية فهي التطبيقية، التي استفاد منها العرب في العمران؛ في المساجد والقصور والأروقة والقباب وتخطيط المدن.

متفرقات هندسية. وضع العلماء العرب والمسلمون مصنفات هندسية تطبيقية تنم عن استقلال في التفكير على الرغم من انطلاقهم من نظريات أقليدس وفيثاغورث وأبولونيوس. يظهر ذلك بجلاء عند ابن الهيثم في كتابه الجامع في أصول الحساب وفي مقالاته في استخراج سمت القبلة؛ فيما تدعو إليه حاجة الأمور الشرعية من الأمور الهندسية؛ في استخراج ما بين البلدين في البعد بجهة الأمور الهندسية، وكذلك رسالة محمد البغدادي التي كان موضوعها تقسيم أي مستقيم إلى أجزاء متناسبة، مع أعداد مفروضة برسم مستقيم، وهي اثنتان وعشرون قضية: سبع في المثلث، وتسع في المربع، وست في المخمس.

بيَّن العرب كيفية إيجاد نسبة محيط الدائرة إلى قطرها (ط) ورمزوا لذلك بالحرف ط، وكانت كالتالي بالتقريب لدى الخوارزمي:

¬10 ، 1/7 3 ، 62,832/20,000

ويوضح ذلك في الجبر والمقابلة بالألفاظ ¸.. وكل مدورة (دائرة) فإن ضربك القطر في ثلاثة وسبع، هو الدور (المحيط) الذي يحيط بها، وهو الاصطلاح بين الناس من غير اضطرار، ولأهل الهندسة فيه قولان آخران: أحدهما أن نضرب القطر في مثاله، ثم في عشر، ثم نأخذ جذر ما اجتمع (الناتج)، فما كان فهو الدور. والقول الثاني، لأهل النجوم منهم، وهو أن نضرب القطر في اثنين وستين ألفًا وثمانية واثنتين وثلاثين، ثم نقسم ذلك على عشرين ألفًا، فما خرج فهو الدور. وكل ذلك قريب بعضه من بعض…·. وقد بلغ الاهتمام بهذه النسبة أن وضع فيها الرياضيون العرب مؤلفات من ذلك الكتاب الذي وضعه غياث الدين الكاشي بعنوان في نسبة القطر إلى المحيط.

أظهر الرياضيون العرب تفوقًا في الهندسة المستوية ولاسيما فيما يتعلق بالمتوازيات. فكان نصير الدين الطوسي مثلاً أول من لفت الانتباه لنقص أقليدس في قضية المتوازيات، وقام بتقديم الأدلة المبنية على فروض في كتابه الرسالة الشافية عن الشك في الخطوط المتوازية. كما استفاد ابن الهيثم من الهندسة المستوية والمجسمة في بحوثه عن الضوء، وتعيين نقطة الانعكاس في أحوال المرايا الكرية والأسطوانية والمخروطية، المحدبة والمقعرة. فنجد أنه وضع أولاً بضع عمليات هندسية على جانب من الصعوبة ذكرها وبيّن كيفية إجرائها ووضع لها البراهين الهندسية المضبوطة. ثم كانت الخطوة الثانية أن اتخذ هذه العمليات الهندسية مقدمات إلى الحلول التي أرادها لتحديد نقاط الانعكاس، ثم أضاف خطوة أخرى بتقديمه البراهين الهندسية لتلك الحلول.

عرف الرياضيون العرب علم تسطيح الكرة؛ وهو علم عرّفه حاجي خليفة في كشف الظنون بأنه ¸علم يتعرف فيه كيفية نقل الكرة إلى السطح مع حفظ الخطوط والدوائر المرسومة على الكرة، وكيفية نقل تلك الدوائر على الدائرة إلى الخط… وجعله البعض من فروع علم الهيئة (الفلك)، وهو من فروع علم الهندسة…·. فقد نقل العرب الخرائط من سطح الكرة إلى السطح المستوي، ومن السطح المستوي إلى السطح الكروي، ومن مصنفاتهم في هذا الفرع من الهندسة كتاب تسطيح الكرة لبطليموس؛ الكامل للفرغاني؛ الاستيعاب للبيروني؛ دستور الترجيح في قواعد التسطيح لتقي الدين.

وألّف العرب مصنفات كثيرة في المسائل الهندسية، وفي التحليل والتركيب الهندسي وفي موضوعات متصلة بذلك مثل تقسيم الزاوية، ورسم المضلعات المنتظمة وربطها بمعادلات جبرية. ويقال إن ثابت بن قرة قسّم الزاوية إلى ثلاثة أقسام متساوية بطريقة تخالف الطرق التي عرفها اليونان. كما بحث العلماء في مراكز الأثقال وتوسّعوا فيها واستعملوا البراهين الهندسية لحل بعض مسائلها. ومن هذا ما ذكره الكوهي في كتاب مراكز الأثقال ¸… أدرنا نصف دائرة أ ب جـ التي مركزها د، مع القطع المكافئ الذي سهمه خط ب د، ومع المثلث أ ب جـ حول الخط ب د القائم على الخط أ جـ حتى يحدث من إدارة نصف الدائرة نصف الكرة، ومن القطع المكافئ مجسم المكافئ، ومن المثلث مخروط، فيكون المخروط مجسمًا للمثلث كالمجسم المكافئ للقطع المكافئ، ونصف الكرة لنصف الدائرة. فمركز ثقل مجسم المثلث، أعني المخروط، يقع على نسبة الواحد إلى أربعة، والمجسم المكافئ على نسبة الاثنين إلى ستة، ونصف الكرة على نسبة الثلاثة إلى ثمانية. أما مركز ثقل المثلث فعلى نسبة الواحد إلى ثلاثة، والقطع المكافئ على نسبة الاثنين إلى خمسة، ونصف الدائرة على نسبة الثلاثة إلى سبعة…·.أما في المساحات فقد تناولوها في ثنايا المصنفات الرياضية باعتبارها فرعًا من الهندسة. فنجد أن بهاء الدين العاملي يخصص لها الفصول الثلاثة الأولى من الباب السادس من كتاب خلاصة الحساب، ويتناول في مقدمته بعض تعريفات أولية في المساحة عن السطوح والأجسام. ثم في الفصل الأول مساحة السطوح المستقيمة الأضلاع كالمثلث، والمربع، والمستطيل، والمعين، والأشكال الرباعية، والمسدس، والمثمن وغيرها. ويتناول في الفصلين الثاني والثالث طرق إيجاد مساحة الدوائر والسطوح المنحنية كالأسطوانات، والمخاريط التامة والناقصة، والكرة. كما يذكر في الباب السابع أشياء تتعلق بالمساحة عل سطح الأرض لإجراء المسح لشق القنوات، ومعرفة مقدار الارتفاعات وعرض الأنهار وأعماق الآبار.
كان من الطبيعي أن ينقل العرب معارفهم الهندسية ويطبقوها على فنهم المعماري من مساجد وقصور ومدن وغيرها، واهتموا بالزخارف الهندسية التي اتسمت بالتناسق والدقة. وهذا يتطلب معرفة دقيقة بأعقد قوانين علم الهندسة لضبط رسم الخطوط والدوائر وتقسيم الأشكال الهندسية. ولا أدل على ذلك من الشواهد القائمة حتى الآن في الأندلس كقصر الحمراء وجنة العريف في غرناطة.

كما برع العرب في تخطيط المدن، وشق الطرق، والقنوات للري. وكان تصميم المدن يتم أولاً بعمل الخرائط الهندسية على الجلود والأقمشة والورق، بل كانوا يعملون لها نماذج مجسَّمة صغيرة كما يعمل مهندسو المعمار اليوم. ومن أشهر المدن التي خططها المعماريون العرب والمسلمون على أسس هندسية بغداد والبصرة في العراق، والفسطاط والقاهرة في مصر، والزهراء في الأندلس، وأصفهان في إيران، وأجرا في الهند. وقد راعوا في هذه المدن وغيرها الموقع الجغرافي، وتوافر المياه، وشق أكبر شوارعها في وسطها، بحيث يخترقها منصفًا لها، ويقوم على جانبي هذا الشارع الأحياء السكنية التي أطلق عليها الخطط. وكان يقوم في مركز المدينة المسجد الكبير ودار الإمارة ودواوينها.



المثلثات. عُرف هذا العلم عند العرب باسم علم الأنساب أيضًا، وقد سمي كذلك لأنه يقوم على استخراج الأوجه المتعددة الناشئة عن النسبة بين أضلاع المثلث. ويعدّ هذا الفرع من الرياضيات علمًا عربياً كالجبر؛ فإلى العرب يرجع الفضل في وضعه بشكل مستقل عن الفلك.

من أبرز ما أضافه الرياضيون العرب والمسلمون إلى علم المثلثات؛ استعمالهم الجيب بدلاً من وتر ضعف القوس في قياس الزوايا. وأدّى ذلك إلى تسهيل كثير من المسائل الرياضية. واستنبط الرياضيون العرب الظل في قياس الزاوية المفروضة بالضلع المقابل لها مقسومًا على الضلع المجاور. والظل هو المماس، غير أن كلمة مماس لاتستخدم اليوم في الهندسة بينما لازالت كلمة ظل تستخدم في المثلثات. وذكر الطوسي في كتاب شكل القطاع ¸إن السبق في استنباط هذا الشكل (الظلي) لأبي الوفاء البوزجاني بلا تنازع مع غيره… وإن في المثلث القائم الزاوية الذي يكون من القسي العظام، تكون نسبة جيب أحد ضلعي القائمة إلى جيب الزاوية القائمة، كنسبة ظل الضلع الأخرى من ضلعي القائمة إلى ظل الزاوية الموترة به·.

أثبت الرياضيون العرب أن نسبة جيوب الأضلاع بعضها إلى بعض تساوي نسبة جيوب الزوايا الموترة بتلك الأضلاع بعضها إلى بعض في أي مثلث كروي. وكان أول من قام بذلك أبو نصر علي بن عراق والبوزجاني في أواخر القرن العاشر الميلادي. كما أوجدوا طريقة مبتكرة لحساب الجداول الرياضية للجيب، وللمماس والقاطع وتمامه. وكان البوزجاني أول من حسب جيب الزاوية التي قدرها 30 دقيقة حسابًا اتفقت نتائجه فيها إلى ثمانية أرقام عشرية مع القيمة الصحيحة.

قام الرياضيون العرب بحل بعض مسائل المثلثات جبريًا، فالبتاني، على سبيل المثال، تمكن من حساب قيمة الزاوية م من المعادلة جا م/جتا م = س بطريقة جبرية كان سابقًا إليها وهي :

جا م = س/ ¬ س² +1



واخترع العرب حساب الأقواس التي كان من فوائدها تسهيل قوانين التقويم، وتُريح من استخراج الجذور المربعة. وكشفوا بعض العلاقات الكائنة بين الجيب والمماس والقاطع ونظائرها، كما توصلوا إلى معرفة القاعدة الأساسية لمساحة المثلثات الكروية، والمثلثات الكروية المائلة الزاوية. ويُعتبر استعمال العرب المماسات والقواطع ونظائرها في قياس الزوايا والمثلثات نقلة هائلة في تطور العلوم، لأنه سهّل كثيرًا من المسائل الرياضية المعقدة.



رواد العلوم الرياضية وأهم مؤلفاتهم. صنّف الرياضيون العرب مؤلفات كثيرة في مختلف فروع العلوم الرياضية؛ كثير منها كان موسوعيًا شمل كل هذه الفروع، بينما اقتصر بعضها الآخر على البحث في علم بعينه، أو فرع من هذا العلم. وقد أتوا على ذكر كل ما استجد في نظرهم من فروع هذا العلم من الأمم المجاورة وأضافوا عليه إضافات ذكروها في هذه المصنّفات وطبقوها عمليًا.

من القرن الثالث إلى الخامس الهجري. تغطي هذه الفترة إسهام بعض علماء الرياضيات في الحقبة الواقعة بين الخوارزمي وأبي الريحان البيروني. وقد نبغ في تلك الحقبة إلى جانب الخوارزمي والبيروني علماء كثيرون منهم، على سبيل المثال، أبو كامل شجاع بن أسلم وثابت بن قرة وسنان بن الفتح الحراني الحاسب والبوزجاني والبتاني وابن الهيثم وآخرون.

كان الخوارزمي أول من ألّف في الرياضيات على عهد المأمون الذي عيّنه رئيسًا لبيت الحكمة. وكان أعظم مؤلَّف له في حقل الرياضيات كتاب الجبر والمقابلة، وهو الكتاب الذي أثر في كل الأدبيات التي تناولت العلوم الرياضية من بعده، سواءً في الشرق أو الغرب. لذا عُدّ الخوارزمي واحدًا من أكبر الرياضيين في جميع العصور. وقد وضع هذا الكتاب بتكليف من الخليفة المأمون ليفيد الناس منه في التجارة والمواريث، والوصايا، وقياس المساحات الخاصة بالأراضي. واستخدم في هذا الكتاب مصطلح جبر لأول مرة. وقد ترجم هذا الكتاب إلى اللاتينية روبرت الشستري، وهو أول من ترجم القرآن إلى اللاتينية. وكانت ترجمة هذا الكتاب أساسًا لدراسات أشهر رياضيي الغرب مثل ليوناردو البيزي الذي اعترف بأنه مدين للعرب بذخيرته المعرفية في الرياضيات.

تناول الخوارزمي في الجبر والمقابلة موضوعات شتى في حل المعادلات الجبرية. تكلم أولاً عن العدد في حساب الجبر والمقابلة، وقسمه إلى جذر ومال وعدد مفرد، وأتى بأمثلة من المعادلات ذات الدرجة الثانية، وشرح حلولها بطريقة جبرية أو هندسية. وفي باب الضرب، بيَّن كيفية ضرب الأشياء؛ أي الجذور بعضها ببعض، ثم باب الجمع والنقصان (الطرح)، ووضع فيه عدة قوانين لجمع المقادير الجبرية وطرحها وضربها وقسمتها، ثم باب المسائل الست؛ وهي مسائل تطبيقية في الجبر أوردها بنصها ثم قام بحلها كنماذج للأبواب المتقدمة، ثم باب المسائل المختلفة؛ وذكر فيها ضروبًا مختلفة من المسائل تؤدي إلى معادلات من الدرجة الثانية وشرح كيفية حلها. يلي ذلك أكثر الأبواب اعتمادًا على التطبيق العملي، وهو باب المعاملات؛ ويتضمن المعاملات التي يقوم بها الناس فيما بينهم، ويحتاجون فيها إلى ضرب من عمليات الجبر والحساب كالبيع والشراء والإجارة، وأورد فيه مسائل تتناول البيع والإجارات وما يتعامل به الناس من الصرف والكيل والوزن. يأتي بعد ذلك باب المساحة وأوضح معنى الوحدة المستعملة في المساحات، وأعطى مساحات بعض السطوح المستقيمة الأضلاع والدوائر والقطاعات. أما الخاتمة فهي كتاب الوصايا، وتطرق فيه إلى مسائل عملية وأمثلة كثيرة تتعلق بالوصايا، وتقسيم التركات، وتوزيع المواريث، وحساب الدور الذي يشمل باب التزويج في المرض، وباب العتق في المرض، وباب في العقر في الدور، وباب السلم في المرض. ونعرض فيما يلي نصًا من حديثه في باب المساحة لجزالة لغته وسهولتها: ¸اعلم أن معنى واحد في واحد إنما هو مساحة، ومعناه ذراع في ذراع؛ فكل سطح متساوي الأضلاع والزوايا، يكون من كل جانب واحدًا؛ فإن السطح كله واحد. فإن كان من كل جانب اثنان (ذراعان) وهو متساوي الأضلاع والزوايا، فالسطح كله أربعة أمثال السطح الذي هو ذراع في ذراع… وكل سطح مربع يكون من كل جانب نصف ذراع فهو مثل ربع السطح الذي هو من كل جانب ذراع… وكل معينَّة (شكل معيَّن) متساوية الأضلاع، فإن ضربك أحد القطرين في نصف الآخر فهو تكسيرها (حاصل الضرب)، وكل مدورة (دائرة)، فإن ضربك القطر في ثلاثة وسُبع هو الدور (المحيط) الذي يحيط بها…·.

اشتهر أبو كامل شجاع بن أسلم (ت نحو 267هـ، 880م) بالحاسب المصري، وهو من المعاصرين للخوارزمي. ومن مؤلفاته في الرياضيات كتاب الجمع والتفريق، ويبحث فيه القواعد الأساسية للعمليات الحسابية لاسيما الجمع والطرح كما يبدو من عنوانه. وله أيضًا كتاب الخطأين؛ ويبحث فيه أصول حل المسائل الرياضية بطريق الخطأين. وكتاب الجبر والمقابلة وفيه يحاول تكملة ما استدركه على الخوارزمي، كما أشاد فيه بفضل الخوارزمي في علم الجبر والمقابلة. ويقول فيه ¸إن كتاب محمد بن موسى (الخوارزمي) المعروف بكتاب الجبر والمقابلة أصحها أصلاً، وأصدقها قياسًا، وكان مما يجب علينا من التقدمة الإقرار له بالمعرفة وبالفضل؛ إذ كان السابق إلى كتاب الجبر والمقابلة، والمبتدئ له، والمخترع لما فيه من الأصول التي فتح الله لنا بها ما كان مغلقًا، وقرّب ما كان متباعدًا، وسّهل بها ما كان معسرًا، ورأيت فيها مسائل ترك شرحها وإيضاحها، ففرعت منها مسائل كثيرة، يخرج أكثرها إلى غير الضروب الستة التي ذكرها في كتابه… وبّينت شرحه، وأوضحت ما ترك إيضاحه وشرحه·. وله من الكتب الرياضية أيضًا كتاب الوصايا بالجذور، والشامل الذي يبحث في الجبر، وهو من أحسن الكتب التي ألّفت في ذلك العصر، وإليه أشار سميث في تاريخ الرياضيات بأنه كان وحيد عصره في حل المعادلات الجبرية، وفي كيفية استعمالها لحل المسائل الهندسية.

مهَّد مهندس العرب ثابت بن قرة (ت 288هـ، 900م) لإيجاد التكامل والتفاضل؛ وذلك بحساب حجم الجسم المتولد عن دوران القطع المكافئ حول محوره. كما يُعزى إليه العثور على قاعدة تستخدم في إيجاد الأعداد المتحابة؛ وهي أزواج نادرة من الأعداد لم يبحث فيها أحد قبله. انظر: الحساب في الجزء السابق من هذه المقالة. كما أن ثابت كان أول من بحث في المربعات السحرية بعد الصينيين. واستطاع أن يبتدع طريقة في تقسيم الزاوية بأسلوب لم يسبق إليه. وله ابتكارات في الهندسة التحليلية؛ وهي الهندسة التي تستفيد من التطبيقات الجبرية.

صنّف ثابت بن قرة كثيرًا من المؤلفات في الرياضيات منها، على سبيل المثال، كتاب في المسائل الهندسية؛ كتاب في المربع وقطره؛ كتاب في الأعداد المتحابة؛ تصحيح مسائل الجبر بالبراهين الهندسية؛ المختصر في الهندسة؛ كتاب في المثلث القائم الزاوية. كما ترجم العديد من الكتب من أشهرها كتاب المدخل إلى علم العدد لنيقوماخوس الجرشي (ت نحو 135م) نسبة إلى جرش (في الأردن اليوم). وهذا الكتاب الأول من نوعه الذي عالج فيه مؤلفه علم الحساب مستقلاً عن الهندسة. وكان من بين الفوائد التي ترتبت على ترجمة هذا الكتاب إدخال مصطلحات رياضية جديدة إلى اللغة العربية، كما أسهمت في توحيد الاصطلاحات والتعابير الرياضية التي احتاجها العلماء العرب والمسلمون إبان نهضتهم العلمية.

اشتهر البتاني (ت 317هـ، 929م) بوصفه فلكيًا أكثر منه رياضيًا. وهو من الذين أضافوا بحوثًا مبتكرة في الفلك والجبر والمثلثات؛ لذا يعدّه الكثيرون من مؤرخي العلوم من عباقرة العالم الذين وضعوا نظريات مهمة. وهو الذي أدخل الجيب واستعمله بدلاً من كلمة الوتر؛ إذ إنه ترك الحساب بالوتر، كما كان يفعل بطليموس ومن جاء بعده، وفضل حساب الهنود بالجيب (نصف الوتر). وهو الذي أدخل مصطلح جيب التمام وأول من عمل الجداول الرياضية لنظير المماس، وعرف قانون تناسب الجيوب، واستخدم معادلات المثلثات الكروية الأساسية والخطوط المماسة للأقواس، واستعان بها في حساب الأرباع الشمسية، وأطلق عليها اسم الظل الممدود؛ أي خط المماس.

يعد أبو الوفاء البوزجاني (ت 388هـ، 998م) أحد الأئمة المعدودين في الرياضيات والفلك. وله فيهما مؤلفات قيمة، واعترف له كل من جاء بعده من رياضيي الشرق والغرب بأنه من أشهر الذين برعوا في الهندسة. وعندما ألّف في الجبر أضاف إضافات ذات شأن على بحوث الخوارزمي فاعتبرت أساسًا لعلاقة الهندسة بالجبر. وقد استعان بالهندسة في حل المعادلتيْن التاليتين:

س ¨ = حـ ، س ¨ + حـ س§ = ب

واستطاع أن يجد حلولاً لها تتعلق بالقطع المكافئ.

يعود الفضل للبوزجاني في وضع النسبة المثلثية (الظل)، وهو أول من استعملها في حلول المسائل الرياضية. كما أوجد طريقة جديدة لحساب جداول الجيب، وكانت جداوله دقيقة للغاية. ووضع بعض المعادلات التي تتعلق بجيب الزاويتيْن، وكشف بعض العلاقات بين الجيب والمماس والقاطع ونظائرها.

وللبوزجاني مؤلفات كثيرة قيمة في الرياضيات من أشهرها: منازل في الحساب؛ وقد قسمه إلى سبعة أبواب احتوت على النسبة والضرب والقسمة والمساحة وحساب الخراج، والمقاسات والصروف ومعاملات التجار. ومن كتبه الأخرى: تفسير الجبر والمقابلة للخوارزمي؛ المدخل إلى الأرثماطيقي؛ كتاب استخراج الأوتار؛ كتاب العمل بالجدول الستيني.

اشتهر ابن الهيثم بوصفه فيزيائياً، غير أن له في الرياضيات بحوثًا أصيلة تدل على أنه كان رياضياً بارعاً تجلت براعته في تطبيق الهندسة والمعادلات والأرقام في المسائل المرتبطة بالطبيعة والفلك، وفي البرهنة على قضاياها ببراهين غاية في البساطة أحيانًا، ومعقدة أحيانًا أخرى، وهي تتناول الهندسة بنوعيها المستوية والمجسمة.

طبق ابن الهيثم الهندسة على المنطق، ووضع في ذلك كتابًا. نقل ابن أبي أصيبعة في طبقات الأطباء قول ابن الهيثم ¸كتاب جمعت فيه الأصول الهندسية والعددية من كتاب أقليدس وأبولونيوس، ونوعت فيه الأصول وقسمتها، وبرهنت عليها ببراهين نظمتها من الأمور التعليمية والحسية والمنطقية، حتى انتظم ذلك مع انتقاص توالي أقليدس وأبولونيوس·.

اتبع ابن الهيثم منهجًا علمياً في بحوثه كلها، خصوصًا ما كان منها في الضوء. انظر إسهام ابن الهيثم في الجزء الخاص بالفيزياء من هذه المقالة. وكتبه المتعلقة بالرياضيات كثيرة منها: شرح أصول أقليدس في الهندسة والعدد؛ تحليل المسائل الهندسية؛ حساب المعاملات؛ أصول المساحة وذكرها بالبراهين؛ خواص المثلث من جهة العمود؛ تربيع الدائرة؛ كتاب في حساب الخطأين.

من القرن السادس إلى الحادي عشر الهجري. تغطي هذه الحقبة إسهام بعض العلماء الذين نبغوا في حقل العلوم الرياضية، بدءًا من عمر الخيام وانتهاءً ببهاء الدين العاملي. وتميزت هذه الحقبة بظهور علماء طوروا كثيرًا من أسس العلوم الرياضية التي تركها أسلافهم في الحقبة السابقة.

كان عمر الخيام من أنبغ الذين اشتغلوا في حقل الرياضيات ولاسيما الجبر، ودرس بدهيات هندسة أقليدس ونظرياتها العامة. والخيام من أوائل العلماء الذين حاولوا تصنيف المعادلات بحسب درجاتها وعدد الحدود التي فيها. واستخدم بعض المعادلات التي استعملها الخوارزمي من قبل في الجبر والمقابلة؛ من ذلك:

س² + 10 س = 39

و س² + 20 = 10 س

و 3 س+ 4 = س²

واستطاع الخيام أن يحل المعادلات التكعيبية هندسياً، واعتبر أن المعادلات ذات الدرجات الأولى والثانية والثالثة إما أن تكون بسيطة مثل : س = ص ، م س = س§ أو مركبة مثل: س² + د س = ص ، س§ + دس² + جـ س = هـ، ووضع للمعادلات البسيطة ستة أشكال وللمركبة اثني عشر شكلاً.

ألف الخيام كثيرًا في الفلك والرياضيات وغيرهما بالفارسية، وأهم آثاره العربية في الرياضيات شرح ما يشكل من مصادرات أقليدس؛ مقالة في الجبر والمقابلة.

كان أول من استخدم الرموز في الجبر القلصادي أبو الحسن علي القرشي (ت 891هـ، 1486م)، وقد نبغ في علم الحساب وألّف فيه مؤلفات ذات شأن. كما أبدع في نظرية الأعداد وفي بحوثه في علم الجبر. وأول مؤلف له اطلع عليه الأوروبيون كان كتاب كشف الأسرار عن علم الغبار.

أعطى القلصادي قيمة تقريبية للجذر التربيعي للكمية (س² + ص) كالتالي:س² + ص = ¬س² +ص = 4 س §+ 3 س ص / 4 س ² + ص وتُعتبر هذه المعادلة مهمة لأنها أبانت طريقة لحساب الجذور الصم بكسور متسلسلة. وقد استفاد من هذه العملية ليوناردو البيزي وغيره في استخراج القيم التقريبية للجذور الصم.

من مصنفاته في الرياضيات، كشف الجلباب عن علم الحساب؛ قانون الحساب؛ كتاب تبصرة في حساب الغبار؛ كشف الأسرار عن علم الغبار وهو مختصر من كتاب كشف الجلباب عن علم الحساب. وهذا الكتاب يحتوي على مقدمة وأربعة أجزاء وخاتمة. وذكر في المقدمة صفة وضع حروف الغبار وما يتعلق بها. والجزء الأول يتناول عمليات الجمع والطرح والضرب والقسمة ومسائل تطبيقية، والثاني يتناول الكسور وإجراء العمليات الحسابية والجبرية عليها. والثالث يتناول الجذور. والرابع يتناول كيفية استخراج المجاهيل والجبر والمقابلة وعملياتهما. أما الخاتمة فتتناول الاستثناء في المعادلات والنسبة واستخراج العدد التام والناقص.

ظلت آثار بهاء الدين العاملي (ت 1031هـ، 1622م) في الرياضيات والفلك زمنًا طويلاً مرجعًا للكثير من العلماء والباحثين. ومن خلال عمله في إيجاد الجذور الحقيقية والتقريبية للمعادلات الجبرية، بالطريقة التي وضعها الخوارزمي، توصل إلى طريقة جديدة أسهل لحل هذه المعادلات، وأطلق على هذه الطريقة طريقة الكفتين أو الميزان. واستمر العمل بهذه الطريقة من بعده حتى ابتكر إسحق نيوتن طريقة أخرى لإيجاد الجذور الحقيقية التقريبية، هي التي تُطبق اليوم.

يعد كتاب خلاصة الحساب أشهر كتب العاملي؛ إذ إنه انتشر انتشارًا كبيرًا في أوساط المعلمين والطلاب على حد سواء، وكان يستعمل إلى وقت قريب في بعض مدارس الشرق الإسلامي. ويتكون هذا الكتاب من عشرة أبواب تعليمية وفيه بعض الأساليب التي لم يُسبق إليها. وجاءت محتويات الأبواب العشرة كما يلي: تناول في البابين الأول والثاني الأعداد الصحيحة والجذور على التوالي. وتكلّم فيهما عن العمليات الحسابية المألوفة من جمع وطرح وقسمة وضرب، واستخراج جذور الكسور وتحويلها. وتناول في الأبواب من الثالث إلى الخامس كيفية استخراج المجهولات بالتناسب وبحساب الخطأين وبالتحليل والتعاكس. وخصص البابين السادس والسابع لحساب مساحة السطوح المستقيمة والأضلاع، والدوائر والمخروط، وقياس عرض الأنهار والمرتفعات وأعماق الآبار. وتناول في الباب الثامن استخراج المجهولات بطريق الجبر والمقابلة. أما البابان الأخيران فقد أورد فيهما بعض القواعد والمسائل التطبيقية من قبيل ¸شحذ ذهن الطالب وتمرينه على استخراج المطلب·.




المصدر : / الموسوعة العربية العالمية
صورة العضو الشخصية
aymen10
عـضـو
 
مشاركات: 28
اشترك في: الجمعة فبراير 15, 2008 1:29 am
مكان: www.chela.2araby.com
تلقى الشكر: 0 مرة

Re: التعريف بعلم الرياضيات

مشاركةبواسطة ذياب » الاثنين مارس 10, 2008 5:36 pm

السلام عليكم.
ننتظر ذلك بفارغ الصبر والمتعطش لتاريخه وانتمائه.
مشكور مسبقا على هذه اللفتة الطبية ، جزاك الله كل خير....
:bye:
صورة
صورة
صورة العضو الشخصية
ذياب
مشرف أقسام الثانوية
 
مشاركات: 2767
اشترك في: الثلاثاء يونيو 26, 2007 6:49 pm
مكان: الجزائر
تلقى الشكر: 17 مرة

Re: التعريف بعلم الرياضيات

مشاركةبواسطة aymen10 » الثلاثاء مارس 11, 2008 2:55 pm

الحضارة القديمة. من المحتمل أن أناس ما قبل التاريخ بدأوا العد أولاً على أصابعهم. وكان لديهم ـ أيضًا ـ طرائق متنوعة لتدوين كميات وأعداد حيواناتهم أو عدد الأيام بدءًا باكتمال القمر. واستخدموا الحصى والعقد الحبلية والعلامات الخشبية والعظام لتمثيل الأعداد. وتعلّموا استخدام أشكال منتظمة عند صناعتهم للأواني الفخارية أو رؤوس السهام المنقوشة.

واستخدم الرياضيون في مصر القديمة قبل حوالي 3000 عام ق.م. النظام العشري (وهو نظام العد العشري) دون قيم للمنزلة. وكان المصريون القدماء روادًا في الهندسة، وطوروا صيغًا لإيجاد المساحات وحجوم بعض المجسمات البسيطة.

ولرياضيات المصريين تطبيقات عديدة تتراوح بين مسح الأرض بعد الفيضان السّنوي إلى الحسابات المعقدة والضرورية لبناء الأهرامات.

وقد طور البابليون القدماء ـ في 2100 ق.م ـ النظام الستيني المبني على أساس العدد 60. ولا يزال هذا النظام مستخدمًا حتى يومنا هذا لمعرفة الوقت، بالسّاعات والدقائق والثواني. ولا يعرف المؤرخون بالضبط كيف طوّر البابليون هذا النظام، ويعتقدون أنه حصيلة استخدام العدد 60 كأساس لمعرفة الوزن وقياسات أخرى. وللنظام الستيني استخدامات هامة في الفلك لسهولة تقسيم العدد 60 وتفوق البابليون على المصريين في الجبر والهندسة. تواريخ مهمة في الرياضيات

3000 ق.م استخدم قدماء المصريين النظام العشري. وطوروا كذلك الهندسة وتقنيات مساحة الأ راضي.

370 ق.م عرف إيودكسس الكندوسي طريقة الاستنفاد، التي مهدت لحساب التكامل.

300 ق.م أنشأ إقليدس نظامًا هندسيًا مستخدمًا الاستنتاج المنطقي.

787م ظهرت الأرقام والصفر المرسوم على هيئة نقطة في مؤلفات عربية قبل أن تظهر في الكتب الهندية.

830م أطلق العرب على علم الجبر هذا الاسم لأول مرة.

835م استخدم الخوارزمي مصطلح الأصم لأول مرة للإشارة للعدد الذي لا جذر له.

888م وضع الرياضيون العرب أولى لبنات الهندسة التحليلية بالاستعانة بالهندسة في حل المعادلات الجبرية.

912م استعمل البتاني الجيب بدلا من وتر ضعف القوس في قياس الزوايا لأول مرة.

1029م استغل الرياضيون العرب الهندسة المستوية والمجسمة في بحوث الضوء لأول مرة في التاريخ.

1142مترجم أديلارد ـ من باث ـ من العربية الأجزاء الخمسة عشر من كتاب العناصر لأقليدس، ونتيجة لذلك أضحت أعمال أقليدس معروفة جيدًا في أوروبا.

منتصف القرن الثاني عشر الميلادي. أُدْخِلَ نظام الأعداد الهندية ـ العربية إلى أوروبا نتيجةً لترجمة كتاب الخوارزمي في الحساب.

1252م لفت نصير الدين الطوسي الانتباه ـ لأول مرة ـ لأخطاء أقليدس في المتوازيات.

1397م اخترع غياث الدين الكاشي الكسور العشرية.

1465م وضع القلصادي أبو الحسن القرشي لأول مرة رموزًا لعلم الجبر بدلاً عن الكلمات.

1514م استخدم عالم الرياضيات الهولندي فاندر هوكِي اشارتي الجمع (+) والطرح (-) لأول مرة في الصيغ الجبرية.

1533م أسس عالم الرياضيات الألماني ريجيومونتانوس، حساب المثلثات كفرع مستقل عن الفلك.

1542م ألف جيرولامو كاردانو أول كتاب في الرياضيات الحديثة.

1557م أدخل روبرت ركورد إشارة المساواة (=) في الرياضيات معتقدًا أنه لا يوجد شيء يمكن أن يكون أكثر مساواة من زوج من الخطوط المتوازية.

1614م نشر جون نابيير اكتشافه في اللوغاريتمات، التي تساعد في تبسيط الحسابات.

1637م نشر رِينيه ديكارت اكتشافه في الهندسة التحليلية، مقررًا أن الرياضيات هي النموذج الأمثل للتعليل.

منتصف العقد التاسع للقرن السابع عشرالميلادي. نشر كل من السير إسحق نيوتن وجوتفريد ولهلم ليبنتز بصورة مستقلة اكتشافاتهما في حساب التفاضل والتكامل.

1717م قام أبراهام شارب بحساب قيمة النسبة التقريبية حتى 72 منزلة عشرية.

1742م وضع كريستين جولدباخ ما عُرف بحدسية جولدباخ: وهو أنّ كلّ عدد زوجي هو مجموع عددين أوليين. ولا تزال هذه الجملة مفتوحة لعلماء الرياضيات لإثبات صحّتها أو خطئها.

1763م أدخل جسبارت مونيي الهندسة الوصفية وقد كان حتى عام 1795م يعمل في الاستخبارات العسكرية الفرنسية.

بداية القرن التاسع عشر الميلادي. عمل علماء الرياضيات كارل فريدريك جوس ويانوس بولْياي، نقولا لوباشيفسكي، وبشكل مستقل على تطوير هندسات لا إقليدية.

بداية العقد الثالث من القرن التاسع عشر. بدأ تشَارْلْز بَبَاج في تطوير الآلات الحاسبة.

1822م أدخل جين بابتست فورييهٌْ تحليل فورييه.

1829م أدخل إفاريست جالوا نظرية الزمر.

1854م نشر جورج بولي نظامه في المنطق الرمزي.

1881م أدخل جوشياه وِيلارد جبس تحليل المتجهات في ثلاثة أبعاد.

أواخر القرن التاسع عشر الميلادي. طور جورج كانتور نظرية المجموعات والنظرية الرياضية للمالانهاية.

1908م طور إرنست زيرميلو طريقة المسلمات لنظرية المجموعات مستخدمًا عبارتين غير معروفتين وسبع مسلمات.

1910-1913م نشر أَلفرد نورث وايتهيد وبرتراند رسِل كتابهما مبادئ الرياضيات وجادلا فيه أنّ كل الفرضيات الرياضية يمكن استنباطها من عدد قليل من المسلمات.

1912م بدأ ل. ي. ج. برلور الحركة الحدسية في الرياضيات باعتبار الأعداد الطبيعية الأساس في البنية الرياضية التي يمكن إدراكها حدسيًا.

1921م نشر إيمي نوذر طريقة المسلمات للجبر.

بداية الثلاثينيات من القرن العشرين الميلادي. أثبت كورت جودل أن أي نظام من المسلمات يحوي جملاً لا يمكن إثباتها.

1937م قدم أَلانْ تُورنْج وصفًا لــ " آلة تَورنج " وهي حاسوب آلي تخيلي يمكن أن يقوم بحل جميع المسائل ذات الصبغة الحسابية.

مع نهاية الخمسينيات وعام 1960م دَخَلت الرياضيات الحديثة إلى المدارس في عدة دول.

1974م طور روجر بنروز تبليطة مكونة من نوعين من المعينات غير متكررة الأنماط. واكتشف فيما بعد أن هذه التبليطات التي تدعي تبليطات بنروز تعكس بنية نوع جديد من المادة المتبلورة وشبه المتبلورة.

سبعينيات القرن العشرين ظهرت الحواسيب المبنية على أسس رياضية، واستخدمت في التجارة والصناعة والعلوم.

1980م بحث عدد من علماء الرياضيات المنحنيات الفراكتلية، وهي بنية يمكن استخدامها لتمثيل الظاهرة الهيولية.

الإغريق والرومان. يعد علماء الإغريق أول من اكتشف الرياضيات البحتة بمعزل عن المسائل العملية. أدخل الإغريق الاستنتاج المنطقي والبرهان، وأحرزوا بذلك تقدمًا مهمًا من أجل الوصول إلى بناء نظرية رياضية منظمة. وتقليديًا يعد الفيلسوف طاليس أول من استخدم الاستنتاج في البرهان، وانصبَّ جل اهتمامه على الهندسة حوالي 600 ق.م.

اكتشف الفيلسوف الإغريقي فيثاغورث، الذي عاش حوالي 550 ق.م.، طبيعة الأعداد، واعتقد أن كل شيء يمكن فهمه بلغة الأعداد الكلية أو نسبها. بيد أنه في حوالي العام 400 ق.م. اكتشف الإغريق الأعداد غير القياسية (وهي الأعداد التي لا يمكن التعبير عنها كنسبة لعددين كليين)، وأدركوا أن أفكار فيثاغورث لم تكن متكاملة. وفي حوالي 370 ق.م. صاغ الفلكي الإغريقي يودوكسوس أوف كنيدوس نظرية بالأعداد غير القياسية وطوّر طريقة الاستنفاد، وهي طريقة لتحديد مساحة المنطقة المحصورة بين المنحنيات، مهدت لحساب التكامل.

وفي حوالي 300 ق.م قام إقليدس ـ أحد أبرز علماء الرياضيات الأغريق ـ بتأليف كتاب العناصر، إذ أقام نظامًا للهندسة مبنيًا على التعاريف التجريدية والاستنتاج الرياضي. وخلال القرن الثالث قبل الميلاد عمَّم عالم الرياضيات الإغريقي أرخميدس طريقة الاستنفاد، مستخدمًا مضلعًا من 96 ضلعًا لتعريف الدائرة، حيث أوجد قيمة عالية الدقة للنسبة التقريبية باي (وهي النسبة بين محيط الدائرة وقطرها). وفي حوالي العام 150 ق.م. استخدم الفلكي الإغريقي بطليموس الهندسة وحساب المثلثات في الفلك لدراسة حركة الكواكب، وتمّ هذا في أعماله المكونة من 13 جزءًا. عرفت فيما بعد بالمجسطي أي الأعظم.

وأظهر الرومان اهتمامًا ضئيلاً بالرياضيات البحتة، غير أنهم استخدموا المبادئ الرياضية في مجالات كالتجارة والهندسة وشؤون الحرب .

الرياضيات عند العرب. قام علماء العرب المسلمون بترجمة وحفظ أعمال قدامى الإغريق من علماء الرياضيات بالإضافة إلى إسهاماتهم المبتكرة.

وألف عالم الرياضيات العربي الخوارزمي كتابًا حوالي عام 210هـ، 825م، وصف فيه نظام العد اللفظي المطور في الهند. وقد استخدم هذا النظام العشري قيمًا للمنزلة وكذلك الصفر، وأصبح معروفًا بالنظام العددي الهندي ـ العربي كما ألف الخوارزمي كذلك كتابًا قيمًا في الجبر بعنوان كتاب الجبر والمقابلة، وأخذت الكلمة الإنجليزية من عنوان هذا الكتاب.

وفي منتصف القرن الثاني عشر الميلادي أدخل النظام العددي الهندي ـ العربي إلى أوروبا نتيجة ترجمة كتاب الخوارزمي في الحساب إلى اللاتينية. ونشر الرياضي الإيطالي ليوناردو فيبوناتشي عام 1202م كتابًا في الجبر عزز من مكانة هذا النظام. وحل هذا النظام تدريجيًا محل الأعداد الرومانية في أوروبا.

وقدم فلكيو العرب في القرن الرابع الهجري، العاشر الميلادي إسهامات رئيسية في حساب المثلثات. واستخدم الفيزيائي العربي المسلم الحسن بن الهيثم أبو علي خلال القرن الحادي عشر للميلاد الهندسة في دراسة الضوء. وفي بداية القرن الثاني عشر الميلادي ألف الشاعر والفلكي الفارسي عمر الخيام كتابًا هامًا في الجبر. ووضع عالم الرياضيات الفارسي نصير الدين الطوسي في القرن الثالث عشر الميلادي نموذجًا رياضيًا إبداعيًا يستخدم في الفلك. انظر: العلوم عند العرب والمسلمين (الرِّياضيات).

عصر النهضة الأوروبية. بدأ المكتشفون الأوروبيون في القرنين الخامس عشر والسادس عشر البحث عن خطوط تجارية جديدة لما وراء البحار مما أدى إلى تطبيق الرياضيات في التجارة والملاحة، ولعبت الرياضيات كذلك دورًا في الإبداع الفني، فطبق فنانو عصر النهضة مبادئ الهندسة وابتدعوا نظام الرسم المنظوري الخطي الذي أضفى الخداع في العمق والمسافة على لوحاتهم الفنية، وكان لاختراع الطباعة الآلية في منتصف القرن الرابع عشر الميلادي أثر كبير في سرعة انتشار وإيصال المعلومات الرياضية. وواكب عصر النهضة الأوروبية كذلك تطور رئيسي في الرياضيات البحتة. ففي عام 1533م نشر عالم رياضيات ألماني اسمه ريجيومانتانوس كتابًا حقق فيه استقلالية الهندسة كمجال منفصل عن الفلك. وحقق عالم الرياضيات الفرنسي فرانسوا فييت تقدمًا في الجبر، وظهر هذا في كتابه الذي نشر عام 1591م.

الرياضيات والثورة العلمية. مع حلول القرن السابع عشر، ساهم ازدياد استخدام الرياضيات ونماء الطريقة التجريبية في إحداث تغيير جذري في تقدم المعرفة، ففي العام 1543م ألف الفلكي اليولوني نيكولاس كوبرنيكوس كتابًا قيمًا في الفلك بين فيه أن الشمس ـ وليست الأرض ـ هي مركز الكون. وأحدث كتابه اهتمامًا متزايدًا في الرياضيات وتطبيقاتها. وعلى الأخص في دراسة حركة الأرض والكواكب الأخرى. وفي عام 1614م نشر عالم الرياضيات الأسكتلندي جون نابـيير اكتشافه للوغاريتمات وهي أعداد تستخدم لتبسيط الحسابات المعقدة كتلك المستخدمة في الفلك. ووجد الفلكي الإيطالي جاليليو ـ الذي عاش في نهاية القرن السادس عشر وبداية القرن السابع عشر ـ أنه يمكن دراسة أنواع كثيرة لحركة الكواكب رياضيًا.

وبين الفيلسوف الفرنسي رينيه ديكارت في كتابه الذي نشر عام 1637م، أن الرياضيات هي النموذج الأمثل للتعليل، وأوضح ابتكاره للهندسة التحليلية مقدار الدقة واليقين اللذين تزودنا بهما الرياضيات.

وأسس الرياضي الفرنسي بيير دو فيرما، وهو أحد علماء القرن السابع عشر، نظرية الأعداد الحديثة. كما اكتشف مع الفيلسوف الفرنسي بليس باسكال نظرية الاحتمالات. وساعد عمل فيرما في الكميات المتناهية الصغر إلى وضع أساس حساب التفاضل والتكامل.

وفي منتصف القرن السابع عشر الميلادي اكتشف العلاّمة الإنجليزي السير إسحق نيوتن حساب التفاضل والتكامل. وكانت أول إشارة إلى اكتشافه هذا في الكتاب الذي نشر عام 1687م. واكتشف الرياضي والفيلسوف الألماني غوتفرين فلهلم لايبنين ـ كذلك وبشكل مستقل ـ حساب التفاضل والتكامل في منتصف عام 1670م، ونشر اكتشافاته ما بين 1684م و 1686م.

التطورات في القرن الثامن عشر الميلادي. خلال أواخر القرن السابع عشر ومطلع القرن الثامن عشر قدمت عائلة برنولي ـ وهي عائلة سويسرية شهيرة ـ إسهامات عديدة في الرياضيات. فقد قدم جاكوب برنولي عملاً رائدًا في الهندسة التحليلية، وكتب كذلك حول نظرية الاحتمالات. وعمل أخوه جوهان كذلك في الهندسة التحليلية، والفلك الرياضي والفيزياء. وساهم نقولا بن يوهان في تقدم نظرية الاحتمالات، واستخدم دانيال بن يوهان الرياضيات لدراسة حركة الموائع وخواص اهتزاز الأوتار.

وخلال منتصف القرن الثامن عشر طور الرياضي السويسري ليونارد أْويلر حساب التفاضل والتكامل وبين أنّ عمليتي الاشتقاق والتكامل عكسيتان. وبدأ عالم الرياضيات الفرنسي جَوزِيفْ لاجْرانْجْ في نهاية القرن الثامن عشر العمل لتطوير حساب التفاضل والتكامل على أسس ثابتة، فطوّر حساب التفاضل والتكامل مستخدمًا في ذلك لغة الجبر بدلاً من الاعتماد على الفرضيات الهندسية التي كانت تساوره الشكوك حولها.

في القرن التاسع عشر. اتسع نطاق التعليم العام بسرعة كبيرة وأصبحت الرياضيات جزءًا أساسيًا في التعليم الجامعي. ونشرت معظم الأعمال المهمة لرياضيات القرن التاسع عشر كمراجع. وكتب الرياضي الفرنسي أَدريان ماري ليجندر في نهاية القرن الثامن عشر وبداية القرن التاسع عشر عدة مراجع مهمة، وبحث في حساب التفاضل والتكامل والهندسة ونظرية الأعداد. ونُشرت في الثلاثينيات من القرن التاسع عشر مراجع مهمة في حساب التفاضل والتكامل لعالم الرياضيات الفرنسي أوجستين لويس كوشي، وأحرز كوشي وعالم الرياضيات الفرنسي جين ببتيست فورييه تقدمًا هامًا في الفيزياء الرياضية. وأثبت عالم الرياضيات الألماني كارل فريدريك جاوس النظرية الأساسية في الجبر، ونصها: أن لكل معادلة جذرًا واحدًا في الأقل. وأدت أعماله في الأعداد المركبة إلى ازدياد تقبلها. وطور جاوس في العشرينيات من القرن التاسع عشر هندسة لا إقليدية ولكنه لم ينشر اكتشافاته هذه، كما طور الهنغاري يانوس بولياي، والروسي نيكولاي لوباشفيسكي وبشكل مستقل ـ هندسات لا إقليدية. ونشرا اكتشافاتهما هذه نحو عام 1830م وطور الألماني جورج فريدريك ريمان في منتصف القرن التاسع عشر هندسة لا إقليدية أخرى.

ومع مطلع القرن التاسع عشر ساهمت أعمال عالم الرياضيات الألماني أوجست فرديناند ميبس في تطوير دراسة الهندسة، وسميت فيما بعد الطوبولوجيا التي تعنى بدراسة خواص الأشكال الهندسية التي لا تتغير بالثني أو المد. انظر: الطوبولوجيا.

وفي أواخر القرن التاسع عشر عمل عالم الرياضيات الألماني كَارْلْ ثُيُودورْ فَيْسْتْراس على وضع أسس نظرية متينة لحساب التفاضل والتكامل. وطوّر تلميذه جُورْجْ كانتور في العقدين الثامن والتاسع من القرن التاسع عشر نظرية المجموعات ونظرية رياضية للمالانهاية. أُنْجِزَ معظم العمل في الرياضيات التطبيقية في القرن التاسع عشر، في بريطانيا حيث طوْر تشَارْلْزْ بايبج الآلة الحاسبة البدائية. ووضع جورج بولي نظامًا في المنطق الرمزي. وقدم عالم الرياضيات الفرنسي جُولْ هنْري بوانكاريه خلال نهاية القرن التاسع عشر إسهامات في نظرية الأعداد والميكانيكا السماوية والطوبولوجيا ودراسة الموجات الكهرومغنطيسية.

حل مسائل للتسلية

فلسفات الرياضيات في القرن العشرين. أظهر العديد من علماء الرياضيات في القرن العشرين اهتماماتهم بالأساسيات الفلسفية للرياضيات. واستخدم بعض علماء الرياضيات المنطق للتخلص من التناقضات، ولتطوير الرياضيات من مجموعة من المسلمات (وهي جمل أساسية تعد صائبة).

أنشأ الفيلسوفان وعالما الرياضيات البريطانيان أَلفرد نورث وايتهد، وبرتراند راسل فلسفة للرياضيات تدعى المنطقية. وفي عملهما المشترك مبادئ الرياضيات (1910-1913م)، المكون من ثلاثة أجزاء، رأوا أن فرضيات جمل الرياضيات يمكن استنباطها من عدد قليل من المسلَّمات.

وكان عالم الرياضيات الألماني ديفيد هلبرت الذي عاش في بداية القرن العشرين منهجيًا. ويعتبر المنهجيون الرياضيات نظامًا منهجيًا بحتًا من القوانين. وقاد عمل هلبرت إلى دراسة الفضاءات المركبة ذات الأبعاد غير المنتهية.

وقاد عالم الرياضيات الهولندي ليوتسن براور ـ في بداية القرن العشرين ـ مذهب الحدْسية، واعتقد أن الناس يمكنهم فهم قوانين الرياضيات بالحدْس (المعرفة التي لا يحصل عليها بالتعليل أو التجربة).

وفي الأربعينيات من القرن العشرين برهن عالم الرياضيات النمساوي كورت جودل أنه يوجد في أي نظام منطقي نظريات لا يمكن إثبات أنها صائبة أو خاطئة بمسلمات ذلك النظام فقط. ووجد أنّ هذا صحيح حتى في مفاهيم الحساب الأساسية.

ثم خطا علماء الرياضيات خلال القرن العشرين خطوات رئيسية في دراسة البنى الرياضية التجريدية. وإحدى هذه البنى الزُّمرة، التي هي تجمُّع لعناصر، قد تكون أعدادًا، وقواعد لعملية ما على هذه العناصر، كالجمع أو الضرب. ونظرية الزمرة مفيدة في مناطق عدة في الرياضيات ومجالات مثل فيزياء الجسيمات الصغيرة.

ومنذ عام 1939م قامت مجموعة من علماء الرياضيات أغلبها من الفرنسيين بنشر سلسلة من الكتب القيمة تحت اسم نقولا بورباكي. واّخذت هذه السلسلة المنحى التجريدي باستخدامها نظام المُسلَّمات ونظرية المجموعات.

وخلال القرن العشرين برزت مجالات رياضية تخصصية جديدة شملت النظم التحليلية، وعلم الحاسوب وكان تقدم علم المنطق أساسًا لتقدم الحاسبات الكهربائية. وفي المقابل، تمكن علماء الرياضيات بفضل الحاسوب من استكمال الحسابات المعقدة بسرعة فائقة. ومنذ الثمانينيات من القرن العشرين شاع استخدام الحواسيب المبنية على النماذج الرياضية لدراسة حالة الطقس والعلاقات الاقتصادية ونظم عديدة أخرى
صورة العضو الشخصية
aymen10
عـضـو
 
مشاركات: 28
اشترك في: الجمعة فبراير 15, 2008 1:29 am
مكان: www.chela.2araby.com
تلقى الشكر: 0 مرة

Re: التعريف بعلم الرياضيات

مشاركةبواسطة aymen10 » الخميس مارس 13, 2008 11:06 pm

كان الكتبة البابليون منذ 3000 سنة يمارسون كتابة الأعداد وحساب الفوائد ولاسيما في الأعمال التجارية في بابل. وكانت الأعداد والعمليات الحسابية تدون فوق ألواح الصلصال بقلم من البوص المدبب. ثم توضع في الفرن لتجف. وكانوا يعرفون الجمع والضرب والطرح والقسمة. ولم يكونوا يستخدمون فيها النظام العشري المتبع حاليا مما زادها صعوبة حيث كانوا يتبعون النظام الستيني الذي يتكون من 60 رمزا للدلالة علي الأعداد من 1-60. وما زال النظام الستيني متبعا حتي الآن في قياس الزوايا في حساب المثلثات وقياس الزمن (الساعة =60 دقيقة والدقيقة =60ثانية ). وطور قدماء المصريون هذا النظام في مسح الأراضي بعد كل فيضان لتقدير الضرائب. كما كانوا يتبعون النظام العشري، وهو العد بالآحاد والعشرات والمئات. ولكنهم لم يعرفوا الصفر. لهذا كانوا يكتبون 500 بوضع 5 رموز يعبر كل رمز على 100.
وأول العلوم الرياضية التي ظهرت قديما كانت الهندسة لقياس مساحة الأرض، وحساب المثلثات لقياس الزوايا والميل في البناء. وكان البابليون يستعملونه في التنبؤ بمواعيد كسوف الشمس وخسوف القمر. وهذه المواعيد كانت مرتبطة بعباداتهم. وكان قدماء المصريون يستخدمونه في بناء المعابد وتحديد زوايا الأهرامات. وكانوا يستخدمون الكسور وتحديد مساحة الدائرة بالتقريب.

الرياضيات الهندية
في بلاد الشرق الإسلامي نجد الهنود قد إبتكروا الأرقام العربية الهندية التي نستعملها حتى اليوم وقد أخذها العرب عنهم وأطلقوا عليها علم الخانات. وكان الهنود يستعملون الأعداد العشرية من 1-9 وأضاف علماء العرب لها الصفر، وهذا العلم نقلته أوربا عن المسلمين بعد أن طوروا هذه الأرقام لتصبح الأرقام العربية الذي يستعملها العالم والمستعملة في بلدان المغرب العربي حاليا.

الرياضيات عند المسلمين
في بغداد أسس الخوارزمي علم الجبر والمقابلة في أوائل القرن التاسع. وفي خلافة أبي جعفر المنصور ترجمت بعض أعمال العالم الأسكندري القديم بطليموس القلوذي CLAUDIUS PTOLOMY ( (ت. 17 م)، ومن أهمها كتابه المعروف، باسم "المجسطي ". واسم هذا الكتاب في اليونانية " (EMEGAL MATHEMATIKE ، " أي الكتاب الأعظم في الحساب .والكتاب موسوعة معارف في علم الفلك والرياضيات. وقد أفاد منه علماء المسلمين وصححوا بعض معلوماته وأضافوا إليه. وعن اللغة الهندية، ترجمت أعمال كثيرة مثل الكتاب الهندي المشهور في علم الفلك والرياضيات، سد هانتاSiddhanta أي " المعرفة والعلم والمذهـب ". وقد ظهرت الترجمة العربية في عهد أبي جعفر المنصور بعنوان "السند هند.ومع كتاب "السند هند" دخل علم الحساب الهندي بأرقامه المعروفة في العربية بالأرقام الهندية فقد تطور على أثرها علم الأعداد عند العرب، وأضاف المسلمون نظام الصفر مما جعل الرياضيين العرب يحلون الكثير من المعادلات الرياضية من مختلف الدرجات، فقد سهل أستعماله لجميع أعمال الحساب، وخلص نظام الترقيم من التعقيد، ولقد أدى استعمال الصفر في العمليات الحسابية إلى اكتشاف الكسر العشري الذي ورد في كتاب مفتاح الحساب للعالم الرياضى جمشيد بن محمود غياث الدين الكاشي (ت 840 هـ1436 م)، وكان هذا الكشف المقدمة الحقيقية للدراسات والعمليات الحسابية المتناهية في الصغر. و أستخرج إبراهيم الفزاري جدولاً حسابياً فلكياً يبين مواقع النجوم وحساب حركاتها وهو ما عرف بالزيج. وفي بغداد أسس الخوارزمي علم الجبر والمقابلة في أوائل القرن التاسع.
وكان من علماء بيت الحكمة في بغداد محمد بن موسى الخوارزمي (ت 232 هـ846 م) " الذي عهد إليه المأمون بوضع كتاب في علم الجبر، فوضع كتابه " المختصر في حساب الجبر والمقابلة وهذا الكتاب هو الذي أدى إلى وضع لفظ الجبر وإعطائه مدلوله الحالي. قال ابن خلدون: "علم الجبر والمقابلة (أي المعادلة) من فروع علوم العدد، وهو صناعة يستخرج بها العدد المجهول من العدد المعلوم إذا كان بينهما صلة تقتضي ذلك فيقابل بعضها بعضاً، ويجبر ما فيها من الكسر حتى يصير صحيحاً". فالجبر علم عربي سماه العرب بلفظ من لغتهم، و الخوارزمي هو الذي خلع عليه هذا الأسم الذي أنتقل إلى اللغات الأوروبية بلفظه العربي ALGEBRA .و ترجم هذا الكتاب إلى اللغة اللاتينية في سنة 1135 م . وظل يدرس في جامعات أوربا حتى القرن 16 م. كما أنتقلت الأرقام العربية إلى أوربا عن طريق ترجمات كتب الخوارزمي الذي أطلق عليه في اللاتينية "الجور تمي "ALGORISMO ثم عدل للجورزمو ALGORISMO للدلالة على نظام الأعداد وعلم الحساب والجبر وطريقة حل المسائل الحسابية وظهرت عبقرية "الخوارزمي " في " الزيج " أو الجدول الفلكي الذي صنعه وأطلق عليه اسم "السند هند الصغير"، وقد جامع فيه بين مذهب الهند، ومذهب الفرس، ومذهب بطليموس (مصر)، فاستحسنه أهل زمانه ذلك وانتفعوا به مدة طويلة فذاعت شهرته وصار لهذا الزيج أثر كبير في الشرق والغرب. وقد نقل الغرب العلوم الرياضية عن العرب وطوروها. وعرف حساب أباكوس: Abacus.أو أباكس. ( لوحة العد) . وهي عبارة عن أطار وضعت به كرات للعد اليدوي. وكانت هذه اللوحة يستعملها الأغريق والمصريون والرومان وبعض البلدان الأوربية قبل وصول الحساب العربي إلى أوربا في القرن 13. وكان يجري من خلال لوحة العد الجمع والطرح والضرب والقسمة.

الرياضيات عند الحضارات الأمريكية القديمة
وفي حضارة المايا بالمكسيك عرف الحساب . وكان متطورا . فالوحدة نقطة والخمسة وحدات قضيب والعشرون هلال . وكانوا يتخذون اشكال الإنسان والحيوان كوحدات عددية .

تطور الرياضيات
وبناء على ما سبق فإن الرياضيات ظهرت بداية كحاجة للقيام بالحسابات في الأعمال التجارية، و لقياس المقادير، كالأطوال والمساحات، و لتوقع الأحداث الفلكية، ويمكن أعتبار الحاجات الثلاث هذه البداية للأقسام العريضة الثلاث للرياضيات، وهي دراسة البنية، والفضاء، والمتغيرات. وظهرت دراسة البنى مع ظهور الأعداد، وكانت بداية مع الأعداد الطبيعية والأعداد الصحيحة والعمليات الحسابية عليها، ثم أدت الدراسات المعمقة على الأعداد إلى ظهور نظرية الأعداد. كما أدى البحث عن طرق لحل المعادلات إلى ظهور الجبر المجرد، وان الفكرة الفيزيائية الشعاع تم تعميمها إلى الفضاءات الشعاعية وتمت دراستها في الجبر الخطي.
وظهرت دراسة الفضاء مع الهندسة
، وبدأت مع الهندسة الاقليدية وعلم المثلثات، في الفضائين ثنائي و ثلاثي الأبعاد، ثم تم تعميم ذلك لاحقا إلى علوم هندسية غير أقليدية، لتلعب دورا في النظرية النسبية العامة.
ان فهم و دراسة التغير في القيم القابلة للقياس هو ظاهرة عامة في العلوم الطبيعية، فظهر التحليل الرياضي كأداة مناسبة للقيام بهذه العمليات، حيث إن الفكرة العامة هي التعبير عن القيمة بتابع، و من ثم يمكن تحليل الكثير من الظواهر على أساس دراسة معدل تغير هذا التابع.
ومع ظهور الحواسيب، ظهرت العديد من المفاهيم الرياضية الجديدة، كعلوم قابلية الحساب، وتعقيد الحساب، ونظرية المعلومات، والخوارزميات. والعديد من هذه المفاهيم هي حاليا جزء من علوم الحاسوب.
حقل آخر هام من حقول الرياضيات هو الاحصاء، الذي يستخدم نظرية الأحتمال في وصف وتحليل وتوقع سلوك الظواهر في مختلف العلوم، بينما يوفر التحليل الرياضي طرقا فعالة في القيام بالعديد من العمليات الحسابية على الحاسوب، مع أخذ بنظر الأعتبار أخطاء التقريب.
صورة العضو الشخصية
aymen10
عـضـو
 
مشاركات: 28
اشترك في: الجمعة فبراير 15, 2008 1:29 am
مكان: www.chela.2araby.com
تلقى الشكر: 0 مرة

Re: التعريف بعلم الرياضيات

مشاركةبواسطة aymen10 » الخميس مارس 13, 2008 11:10 pm

انتهى هناك الكثير لكن ارجوا أن تستفيدوا من القليل
صورة العضو الشخصية
aymen10
عـضـو
 
مشاركات: 28
اشترك في: الجمعة فبراير 15, 2008 1:29 am
مكان: www.chela.2araby.com
تلقى الشكر: 0 مرة

Re: التعريف بعلم الرياضيات

مشاركةبواسطة ذياب » الجمعة مارس 14, 2008 8:49 am

aymen10 كتب:انتهى هناك الكثير لكن ارجوا أن تستفيدوا من القليل

السلام عليكم.
بارك الله فيك على المعلومات القيمة أفدنا أكثر نحن متعطشين لمعلومات لها تأثير على الأداء الرياضي وشكرا ... :green2:
صورة
صورة
صورة العضو الشخصية
ذياب
مشرف أقسام الثانوية
 
مشاركات: 2767
اشترك في: الثلاثاء يونيو 26, 2007 6:49 pm
مكان: الجزائر
تلقى الشكر: 17 مرة

Re: التعريف بعلم الرياضيات

مشاركةبواسطة aymen10 » الخميس إبريل 17, 2008 2:32 pm

شكرا لك اخ ذياب
صورة العضو الشخصية
aymen10
عـضـو
 
مشاركات: 28
اشترك في: الجمعة فبراير 15, 2008 1:29 am
مكان: www.chela.2araby.com
تلقى الشكر: 0 مرة


العودة إلى المراجع والبحوث والملفات الرياضية

الموجودون الآن

المستخدمون المتصفحون لهذا المنتدى: Bing [Bot] و 2 زائر/زوار